ヒアルロン酸とは何ですか?

年18,2025
カテゴリ:化粧品資料

ヒアルロン酸(HA) is a high-molecular-体重linear macromolecular acidic mucopolysaccharide composed のrepeating disaccharide units のD-glucuronic 酸とN-acetyl-D-glucosamine [1]. Hyaluronic 酸was first isolated からvitreous humour のcattle で1934, とit was discovered that ヒアルロン酸is also widely found でのinterstitial matrix のconnective tissue でanimals とhumans. Among these, the vitreous humour のthe eye, skin, umbilical cord, cartilage とsynovial fluid のjoints have high levels ヒアルロンのacid. Hyaluronic 酸from different sources has basically the same structure, but ヒアルロン酸from different sources has different molecular weights[2]. As a multifunctional matrix in the body, ヒアルロン酸has important physiological functions such as regulating cell proliferation, differentiation, migration, lubricating joints, protecting cartilage, promoting wound healing, resisting oxidation, とanti-aging.

 

Hyaluronic 酸has a strong water-retaining effect, とits moisturising 効果is higher than that のother moisturising substances found in nature. It is known as an ideal natural moisturising factor とhas been widely used in clinical medicine and cosmetics production. With the approval ヒアルロンのacid as a new raw material for food this year, the アプリケーションfields のヒアルロンacid are constantly expanding. At the same time, consumers'健康意識は絶えず向上しており、ヒアルロン酸原料の需要は絶えず拡大しています。高品質のヒアルロン酸の工業的な調製は不可欠です。この記事では、天然ヒアルロン酸の生理学的機能、調製、分離と精製、応用分野の概要を説明し、ヒアルロン酸の開発と利用のための参考資料を提供することを目的としています。

 

Hyaluronic Acid

1体内におけるヒアルロン酸の分布と生理機能

1.1体内におけるヒアルロン酸の分布

Natural hyaluronic acid is widely distributed in 様々なtissues of higher animals, although the amount varies. It is mainly distributed in the cell matrix and lubricating fluid, including 人間umbilical cord, synovial fluid, skin, thoracic lymphatic fluid, vitreous humour, and rooster comb. The rooster comb is currently the animal tissue with the highest hyaluronic acid content. The hyaluronic acid content of various organisms is shown in Table 1 [3]. Hyaluronic acid is widely distributed in various tissues of the human body. The distributiにof hyaluronic acid in the tissues of different organisms is basically the same, with the main difference being in molecular weight. The molecular weight of hyaluronic acid in normal biological tissues is approximately 1000–8000 kDa. Different molecular weights stimulate different receptors or pathways in three-dimensional structures, exerting different effects [4].

 

1.2ヒアルロン酸の生理機能

1.2.1関節を潤滑し、軟骨を保護します

Hyaluronic acid is widely distributed in the intercellular matrix and cell matrix. It is the main component of synovial fluid in the joints and is distributed にthe surfaces of cartilage and ligaments. Hyaluronic acid has good viscoelasticity. When walking, the synovial fluid is viscous to reduce joint friction. When performing high-impact actions such as running, the synovial fluid is elastic to buffer the stress on the joints. When the joint is under load, the synovial fluid changes from a fluid to an elastic body to protect the articular cartilage [5]. There is a lot of evidence to suggest that osteoarthritis in elderly patients is caused によってoxidative stress. Osteoarthritis is the wear and tear of articular cartilage. When attacked によってreactive oxygen species, the long-chain hyaluronic acid is broken down into hyaluronic acid fragments, weakening the overall structure of the cartilage [6].

 

1.2.2は創傷治癒を促進する

The wound healing process can be divided into four stages: hemostasis, inflammation, proliferatイオンand maturation. When an injury occurs, the amount of hyaluronic acid in the wound increases. Due to its large molecular weight, hyaluronic acid is used as an early temporary structure 【7】. During the inflammation stage, damaged cells begin to secrete exudates containing salts, water and proteins [8]. This stage is characterised によってredness and heat at the injury site, pain and dysfunction [9]. Hyaluronic acid binds to the CD44 receptor on the surface of leukocytes and endothelial cells, causing fewer leukocytes to migrate to the inflammation site and reducing the degree of wound swelling [10]. The CD44 receptor plays an important role in the inflammatory response, in which high molecular weight hyaluronic acid stimulates the anti-inflammatory response and 低分子ヒアルロン酸induces the inflammatory response. In the proliferation phase, the wound is rebuilt with new collagen tissue, the extracellular matrix is secreted, and the wound begins to shrink under the action of myofibroblasts [11]. In the maturation phase, the unorganized collagen forms cross-links, reducing scarring and enhancing the elasticity of the 肌in the wound area.

 

1.2.3細胞の増殖、移動および分化を調節する

Hyaluronic acid is an important regulatory factor affecting the processes of cell proliferation, migration and differentiation. The presence of hyaluronic acid helps to hydrate local tissues, weaken the fixation of cells to the extracellular matrix, and promote cell separation, migration and even division. The hyaluronic acid receptors on the cell surface can also be linked to some kinases related to cell movement[12].

 

During the early stages of mitosis, hyaluronic acid levels increase, and levels drop sharply after mitosis enters the G1 phase (the period between the completion of the previous mitosis and the beginning of the synthesis phase). High levels of hyaluronic acid cause the release of growth factors, and by forming an extra-cellular membrane, it affects cell-cell interactions and accelerates cell proliferation [13]. However, it has not yetbeen observed that hyaluronic acid directly promotes mitotic activity. This signalling and regulatory effect of hyaluronic acid is related to its molecular weight. Different molecular weights trigger different signalling pathways. Low molecular weight hyaluronic acid induces cell proliferation. In addition, low molecular weight hyaluronic acid can enhance the expression of pro-inflammatory factors, while high molecular weight hyaluronic acid has the opposite effect [14].

 

1.2.4血管の形成効果

それは報告されていますlow molecular weight hyaluronic acid can stimulate the expression of signal molecules, stimulate the proliferation and migration of 血管endothelial cells, and high molecular weight hyaluronic acid can inhibit endothelial cell proliferation and migration, thus having an anti-angiogenic effect 【15位】. However, most of the evidence supporting the effect of hyaluronic acid on cell growth has been produced using tumour xenografts. Some data show that injecting low molecular weight hyaluronic acid can inhibit tumour growth [16], which conflicts with the above concept and indicates that there may be more complex pathways and interactions that require further research.

 

1.2.5抗酸化作用

Studies have found that hyaluronic acid can eliminate free radicals and has a certain degree of antioxidant activity. High molecular weight hyaluronic acid can protect cells from the effects of reactive oxygen species, which, in excess, can damage proteins, lipids and DNA. Some of the antioxidant properties of hyaluronic acid include its ability to reduce ultraviolet-induced apoptosis and acid-induced DNのdamage 〔17〕. Feng Ning et アル[18] studied the serum superoxide dismutase activity after oral administration of hyaluronic acid and found that hyaluronic acid has an in vivo antioxidant effect. Yu Haihui et al. [19] found that the mucus hyaluronic acid of Andrias davidianus has a certain in vitro antioxidant activity and can scavenge DPPH.,.OH, ABTS+.and reduce Fe3+. Some scholars speculate that the antioxidant properties of hyaluronic acid are due to the hydroxyl functional groups in the structure of hyaluronic acid, which can absorb reactive oxygen species [14].

 

1.2.6老化防止に効果があり

Studies have found that the amount of hyaluronic acid in the human body decreases with age. Compared to the age of 20, the amount of hyaluronic acid decreases by 75% at the age of 60. The older the person, the lower the amount of hyaluronic acid in the body. The amount of hyaluronic acid in the body also varies among people of the same age. People with a high amount of hyaluronic acid in the body look younger, while people with symptoms of aging have significantly lower amounts of hyaluronic acid in the body [20]. A decrease in the amount of hyaluronic acid in the skin reduces the space filled by the intercellular gel-like matrix, causing the cells to be arranged closely together. Collagen loses water and hardens, making the skin rough and losing its elasticity. Studies have found that hyaluronic acid can heal skin damage caused by ultraviolet radiation, and high concentrations of hyaluronic acid can affect collagen expression [21].

 

In summary, the physiological functions of hyaluronic acid are closely related to its molecular weight. Hyaluronic acids with different molecular weights play different roles in physiological functions such as wound healing, regulation of cell proliferation, migration, differentiation, 血管新生and antioxidant activity. Low molecular weight hyaluronic acid induces inflammatory responses, induces cell proliferation, stimulates the proliferation and migration of vascular endothelial cells, and high molecular weight hyaluronic acid has better antioxidant activity than low molecular weight hyaluronic acid. This difference in physiological function leads to differences in its ultimate application in products.

 

2ヒアルロン酸の構造と性質

2.1ヒアルロン酸の構造

Hyaluronic acid is a high molecular weight acidic mucopolysaccharide composed of alternating glucose units linked by β-1,3-glycosidic bonds and N-acetylglucosamine units linked by β-1,4-glycosidic bonds. The primary structure of hyaluronic acid is shown in Figure 1 。[22]. Hyaluronic acid, as the only currently discovered non-sulfur-containing glycosaminoglycan, differs from common glycosaminoglycans in that it is synthesized via cell membrane surface membrane proteins rather than by the cell'sゴルジ装置[23]。

 

2.2ヒアルロン酸の物理的および化学的性質

Hyaluronic acid is a white amorphous solid with the common properties of acidic mucopolysaccharides. It is soluble in water but insoluble in organic solvents such as ethanol [24]大人. Hyaluronic acid aqueous solutions have specific rheological properties, with good viscoelasticity. Low concentrations or small molecular weight hyaluronic acid exist as monomers, with little change in viscosity. High molecular weight and high concentration hyaluronic acid has good viscoelasticity[25], and exhibits non-Newtonian fluid characteristics, making it very suitable for simulating synovial fluid. The viscoelasticity of synovial fluid is related to the concentration of hyaluronic acid[13].

 

A reasonable change in the molecular weight and solution concentration of hyaluronic acid can obtain better viscoelasticity. Due to the presence of hydrogen bonds between the monosaccharides in the hyaluronic acid molecule chain, hyaluronic acid at low concentrations can also form a unique honeycomb network structure, allowing hyaluronic acid to adsorb about 1000 times its own moisture, which has strong moisturising properties[26]. Hyaluronic acid with different molecular weights has different physical and chemical properties. High molecular weight hyaluronic acid has higher viscosity, while the random curled structure of long-chain hyaluronic acid is more stable, and short chains are more likely to expand 【27】. The method and biological pathway by which cells differentiate between high molecular weight and low molecular weight hyaluronic acid are still unknown.

 

Hyaluronic Acid powder

3ヒアルロン酸の調製と精製

3.1ヒアルロン酸の源

3.1.1動物組織源

Animal tissue sources can be divided into terrestrial sources and marine sources. Currently, hyaluronic acid is mainly extracted from terrestrial animal tissues such as the rooster comb, human umbilical cord, egg shell membrane, and pig skin. The rooster comb is widely used for hyaluronic acid extraction because it is an animal tissue with a high hyaluronic acid content. Due to the limited supply of terrestrial animal tissue, large-scale production is not possible. Researchers are constantly trying to extract hyaluronic acid from other animal tissues or other sources of raw materials. Marine biological resources such as animal residues, waste, and by-products have always received widespread attention due to their long-term economic and environmental benefits.

 

They have significant potential as a source of substances such as hyaluronic acid [28]. Researchers have extracted hyaluronic acid from biological tissues such as the ocular vitreous of marine organisms such as the eyes of cuttlefish, squid, tuna, frog skin, fish mucus, and the aqueous humour of freshwater mussels [19, 25, 29]. Yi et al. [29] first extracted hyaluronic acid from the ocular vitreous of tuna, with a final extraction rate of 0.013%. and Haihui Yu et al. [19] extracted it from the surface mucus of the 中国giant salamander. When the amount of added trypsin was 1.5%, the yield of hyaluronic acid was 1.7041 mg/g. The structure of the extracted hyaluronic acid was the same as the standard product. Compared with the tissues of land animals such as the rooster comb and umbilical cord, the extraction rate was low, but it can be used as a stable source of hyaluronic acid extraction.

 

3.1.2微生物発酵源経路

Hyaluronic acid is widely distributed in the cell envelope of some bacteria, protecting the cells from oxygen damage. Previous research on hyaluronic acid in bacteria was mainly aimed at exploring the composition and function of the envelope. Shiseido in Japan was the first to apply the fermentation method to the industrial production of hyaluronic acid. The synthesis of hyaluronic acid in the cell is complex and continuous. Glucose is converted to gluco-6-phosphate by glucokinase, and then to the precursors uridine diphosphate N-acetylglucosamine and uridine diphosphate glucuronic acid by various enzymes such as isomerase and glucuronic acid phosphatase and other enzymes to produce the precursor substances uridine diphosphate-N-acetyl-glucosamine and uridine diphosphate-glucuronic acid, which are alternately added to the hyaluronic acid molecule chain under the action of hyaluronic acid synthase [30].

 

Streptococcus zooepidemicus from group C is the main source of hyaluronic acid [31]. Due to its pathogenicity and endotoxins in wild-type strains, it has become common practice in actual production to modify wild-type strains and produce hyaluronic acid through non-pathogenic strains [32]. The main means of strain treatment are genetic engineering, mutagenesis breeding and protoplast breeding. JIN et al. [33] improved the hyaluronic acid synthesis pathway of Bacillus subtilis by integrating the leech-derived hyaluronidase LHyal gene, regulating the expression of LHyal by sequence optimization and N-terminal fusion His tag strategy, and obtaining a high-yield strain that accumulates hyaluronic acid to 19.38 g/L after 100 h of fermentation in a 3 L fermenter. Wei Chaobao et al. [34] selected Streptococcus zooepidemicus, which has a short production cycle and high strength, for construction on this basis, and obtained a high-yield strain that can alleviate the problem of dissolved oxygen during fermentation. At present, the synthesis of hyaluronic acid has been achieved through the heterologous expression of hyaluronic acid synthase in different hosts such as Bacillus subtilis [35], Lactobacillus [36] and Bacillus glutamicum 〔37〕.

 

3.2ヒアルロン酸の調製

3.2.1動物組織源からのヒアルロン酸の調製

The production of hyaluronic acid from animal tissue sources often involves tissue extraction. The complete process includes pretreatment, extraction, separation and purification, drying, etc. The processing technology is relatively mature, the extraction method is simple, and most of the extracted hyaluronic acid is of high molecular weight [38], with high viscosity and good moisturising properties. It is mainly used in the pharmaceutical and cosmetics industries. The main extraction methods are salt extraction and enzyme extraction. The addition of inorganic salts and enzymes can break the complexation of hyaluronic acid and proteins in animal tissue. In addition, enzymes can hydrolyse impurities such as proteins and nucleic acids, which is beneficial for the extraction of hyaluronic acid [39].

 

KALKANDELEN et al. [40] successfully extracted hyaluronic acid from the comb of a chicken by defatting the tissue homogenate with acetone and extracting it multiple times with a ナトリウムacetate solution. However, the tissue extraction method is complicated and the extraction rate is low. Enzyme extraction has become a research hotspot due to its high efficiency. Currently, the commonly used enzymes for extraction include neutral proteases, pepsin, trypsin, papain, etc. Ürgeová et al. [41] compared the results of extracting hyaluronic acid from eggshell membranes using pepsin, trypsin and papain. The results showed that trypsin was more effective than the other two enzymes. At a pHof 8, 37 °C and a trypsin dosage of 50 U/g for enzymolysis of eggshell membranes, the hyaluronic acid extraction rate was 44.82 mg/g eggshell membrane. In order to obtain a better extraction effect, enzyme mixtures or ultrasound are often used in experiments to assist extraction. Chen Shengjun et al. [42] used ultrasound (200 W, 30 kHz) to assist trypsin and complex protease to extract from tilapia eyes. After optimisation, the hyaluronic acid yield was 11.44%, which is about 5% higher than that obtained by simple 酵素hydrolysis.

 

3.2.2微生物ヒアルロン酸の調製

The 微生物fermentation process mainly includes the following steps: seed culture, fermentation, separation and purification, and drying. At present, research on improving the extraction efficiency of microbial fermentation mainly focuses on cultivating excellent strains, selecting suitable culture media, and optimizing fermentation conditions. There have been many studies on obtaining high yields of hyaluronic acid by controlling the conditions of the culture medium and fermentation process. Compared to the preparation of hyaluronic acid by tissue extraction, one advantage of the microbial fermentation method is that the molecular weight of hyaluronic acid can be controlled during the fermentation process. This is also the main content of current research on the fermentation process of hyaluronic acid. The regulation of hyaluronic acid molecular weight is affected by hyaluronic acid synthase and the relative strength of its binding to the substrate, the concentration ratio of hyaluronic acid precursor substances to hyaluronic acid synthase concentration [43]. Fructose-6-phosphate produced from carbon sources can be used to synthesise lactic acid, inhibit bacterial growth and hyaluronic acid synthesis. It is possible to inhibit other pathways that compete with hyaluronic acid for carbon sources (such as glycolytic pathways), so that more carbon sources can be used for hyaluronic acid synthesis, thereby increasing hyaluronic acid production and molecular weight [44].

 

The balance of metabolic fluxes can affect the molecular weight of hyaluronic acid [45]. 研究has been carried out on fermentation conditions that affect hyaluronic acid production and molecular weight, such as temperature, aeration, pH, stirring speed, etc. Certain research has been conducted on fermentation conditions that affect the yield and molecular weight of hyaluronic acid, such as Liu Jinlong et al. [46] who studied the effect of fermentation conditions on the molecular weight of hyaluronic acid synthesized by Streptococcus equi subsp. zooecium. Batch culture fermentation mode is more conducive to the production of high molecular weight hyaluronic acid than glucose feeding culture mode. Within the range of 0–45% dissolved oxygen concentration, the relative molecular weight increased by 109.4% with increasing dissolved oxygen levels. Low temperatures are conducive to hyaluronic acid synthesis, and the yield and molecular weight of hyaluronic acid are relatively high at low temperatures. At 33 °C, the yield and molecular weight of hyaluronic acid are 4.41 g/L and 2.54×106, respectively. pH has a different effect on the yield and molecular weight of hyaluronic acid. The highest yield of hyaluronic acid (3.72 g/L) was obtained at pH 7, and the lowest yield (3.01 g/L) was obtained at pH 8. However, the highest molecular weight (2.38×106) was obtained at pH 8, indicating that 良質のヒアルロン酸 production can be achieved by controlling the fermentation process conditions during the production process.

 

動物組織の抽出と微生物発酵は、ヒアルロン酸を生成する2つの最も一般的な方法です。組織抽出は、動物組織からヒアルロン酸を抽出するために使用されます。この方法は初期によく使われていましたが、抽出プロセスが複雑で、ヒアルロン酸の収率が低く、原料の供給源に制限がありました。科学技術の進歩に伴い、発酵は低コスト、高収率、大量生産の容易さという利点から、ヒアルロン酸工業生産の主流となっています。準備方法の継続的な改善に伴い、people's demand for hyaluronic acid production has gradually shifted from high yield to high quality. Current research focuses on producing hyaluronic acid with specific molecular weight through genetic engineering, mutagenesis and other methods to meet the needs of hyaluronic acid in different applications. Establishing an efficient and safe preparation method of hyaluronic acid to produce hyaluronic acid with specific molecular weight that meets various application scenarios will become a research hotspot.

 

3.3ヒアルロン酸の分離と精製

Regardless of whether the tissue extraction method or the fermentation method is used, the crude hyaluronic acid extracted contains some proteins, nucleic acids and other impurities, which need to be separated and purified to obtain pure hyaluronic acid. According to the principle of separation and purification, it can be roughly divided into three methods: precipitation, 濾過and adsorption.

 

3.3.1降水量

The main precipitation methods are quaternary ammonium salt precipitation and organic solvent precipitation. The principle of the quaternary ammonium salt purificationmethod is that the quaternary ammonium salt and hyaluronic acid have different charges in an aqueous solution. The two form a complex and precipitate out in a low salt solution, but dissociate and dissolve in a high salt solution, thereby achieving the purpose of removing impurities that do not complex with hyaluronic acid. Commonly used quaternary ammonium salts include cetylpyridinium bromide (CPB), cetyltrimethylammonium bromide (CTAB), cetylpyridinium chloride (CPC) and other long-chain quaternary ammonium salts [47]. This method of purification yields high-purity hyaluronic acid with good results, and can remove impurities that do not complex with quaternary ammonium salts. The organic solvent precipitation method mainly affects the dielectric constant of the medium to cause intra- and intermolecular aggregation, thereby achieving the purpose of removing proteins [47]. 


Compared with restricted reagents such as chloroform and acetone, ethanol is more widely used due to its safety and low cost. Song Lei et al. [49] optimised the factors affecting the purity of hyaluronic acid after ethanol extraction by combining plate and frame filtration to obtain a high purity hyaluronic acid約数の和は93.71%。cavalcantiら[50]は、エタノールと発酵スープの比が誘電率に及ぼす影響と、phがヒアルロン酸の浄化に及ぼす影響を調べました。phが4でエタノール発酵液の比率が2:1の場合、ヒアルロン酸の純度は55%、回収率は85%で、有機溶媒の沈殿によってヒアルロン酸の初期精製が行われ、良好な結果が得られました。

 

3.3.2濾過

The principle of filtration is to retain particles on a porous membrane based on particle size. Compared to organic solvent precipitation, filtration does not involve the consumption of organic solvents, is simple to implement, and can be industrialised. However, the protein removal effect of filtration alone is not good, and pore blockage will occur as purification progresses, limiting its application in the purification of hyaluronic acid. Tangential filtration or the use of filter aids can greatly reduce pore blockage [51]. GÖZKE et al.[52] proposed an electrofiltration technique combining membrane filtration and electrophoresis. The electric field has a strong promoting effect on the filtration of hyaluronic acid. Compared with conventional filtration, the concentration factor based on the sample osmotic mass is increased by nearly 4 times in the same experimental time. Moreover, this filtration method will not negatively affect the molecular structure and average molecular weight of hyaluronic acid, providing new possibilities for the downstream purification process of hyaluronic acid.

 

3.3.3吸着

吸着は、多孔質固体の表面に化合物を選択的に保持することに基づくヒアルロン酸の精製方法です。一般的に使用される吸着剤は、活性炭、樹脂、シリカゲルなどです。活性炭は、タンパク質や核酸の吸着力が強く、高分子量の中性多糖類の吸着力が弱いため、ヒアルロン酸の分離・精製に理想的な素材です。wei linnaら[53]は、プラトゾコールからヒアルロン酸を抽出する過程で、エタノール沈殿と活性炭吸着を組み合わせた方法を用いた tissues. The recovery rate of the extracted hyaluronic acid can reach 72.73%. CAVALCANTI et al. [50] found that the structure of hyaluronic acid at different pH values has an important effect on the precipitation performance. At pH 4, the recovery rate of hyaluronic acid was 85%, and at pH 7, the recovery rate of hyaluronic acid was 70%. During the use of activated carbon, adjusting the pH to an appropriate value can increase the recovery rate of hyaluronic acid.

 

Electrophoresis is a widely used method for separating proteins, and its separation efficiency is affected by the gel. Compared with other operations, it has a lower purification efficiency for hyaluronic acid. Ion 交換chromatography is also one of the widely used methods for purifying biological macromolecules. This method is gentle and does not cause changes in molecular structure, but it is relatively expensive. It is necessary to select suitable exchange resins and exchange conditions, and the operation is complex. It is mainly used in the production of medical grade hyaluronic acid. Ni Hangsheng et al. [54] used a strong acid cation exchange resin in tandem with a strong base anion exchange resin modified with a histidine group. The impurity proteins in the crude hyaluronic acid were purified by exchange adsorption with the strongly acidic cation exchanger in an acidic solution, and eluted with ナトリウムchloride solution. The protein content of the obtained high-quality hyaluronic acid is less than 0.075%, the average molecular weight is greater than 9.41×105, and the yield of purified weight is 58%~61%.

 

Separation and purification is an essential step in the preparation of high-purity, high-quality hyaluronic acid. At present, there is relatively little research on the effect of various purification operations on the purity of hyaluronic acid during purification. CAVALCANTI et al. [51] expressed the degree of purification as a percentage of hyaluronic acid or protein in the solution, and summarized the change in the purity of hyaluronic acid during the purification process.

 

The hyaluronic acid fermentation broth derived from Streptococcus zooepidemicus first underwent an isopropanol precipitation operation, with a protein content of 14.1%; a silica gel adsorption operation, with a protein content of 4.5%; and a charcoal filter module combining filtration and adsorption, with a protein content of only 0.6%. Finally, the protein content reached 0.06% after dialysis filtration. Each separation and purification method has its own advantages and disadvantages. In actual industrial production, a reasonable combination of several separation and purification methods is often used to achieve the maximum effect, depending on the source of the raw materials and the different requirements of the end products.

 

4ヒアルロン酸の応用

4.1食品分野でのアプリケーション

Hyaluronic acid is widely used in the Japanese food market. In addition to 健康foods, it is also widely used in ordinary foods such as beverages, soft candies, and jams. In the USfood market, hyaluronic acid is mainly used as a dietary supplement [55]. At present, the main products containing hyaluronic acid in China are health foods, and the main effect is to improve skin moisture. Cha Shenghua et al. [56] developed a kind of bird'の巣缶効果的に他の副作用なしで皮膚の水分を向上させることができる主な原料としてヒアルロン酸ナトリウム、。市販されている主な種類は、カプセル、経口投与、粉末飲料です。ヒアルロン酸が経口消化を通して吸収された後、体内のヒアルロン酸合成の前駆体が増加し、体内のヒアルロン酸の含有量を増加させ、皮膚組織にそれを濃縮し、それによって皮膚を強化します' sの保水力、角質層を柔らかく、さらに肌の弾力性を向上させ、しわを減らす[57]。

 

4.2化粧品や日用品のアプリケーション

Hyaluronic acid is found in large quantities in the human body and other living tissues. It has extremely strong moisturising properties and is mainly used in cosmetics as a moisturising agent, thickener and emulsifier [58−59]. At present, almost all types of cosmetic formulations on the market contain hyaluronic acid. Hyaluronic acid can easily form a hydrated film on the skin to enhance the lubrication of the skin, promote the absorption of active substances by the skin, and to a certain extent, the 形成of the film can isolate bacteria, which is beneficial to anti-inflammatory and repair of the skin and delay skin aging [60]. Hyaluronic acid is a component that exists in skin tissue itself, which is safer. In addition, as hyaluronic acid has an anti-inflammatory and restorative effect in the mouth, it can be added to toothpaste to provide a certain degree of moisturising and efficacy[61]. The application of hyaluronic acid in daily necessities is constantly expanding and deepening.

 

4.3医療技術

Hyaluronic acid is an important component of synovial fluid in the joints and plays an important physiological role in joint protection. Abnormal synthesis or metabolism of hyaluronic acid in the joints can lead to joint diseases. At this time, exogenous hyaluronic acid can be injected to supplement the synovial fluid and improve the physiological function of the joints[62]. Due to its unique physical and chemical properties and biocompatibility, hyaluronic acid is widely used in ophthalmic surgeries related to the retina and cataracts.

 

ヒアルロン酸は美容液の充填剤として使用され、皮膚の下に注入することで、顔のシワや傷跡を取り除き、顔にふっこりとした外観を与えます[63]。ヒアルロン酸スプレーは患者を修復するために使用することができます's face after laser surgery, effectively restoring skin barrier damage[64]. Hyaluronic acid derivatives are also widely used in ophthalmic preparations. For example, sodium hyaluronatecan replace the role of tear mucin and is used to 治療dry eye disease and relieve dry eye symptoms [65]. Studies have found that the body'のヒアルロン酸含有量は、多くの疾患の発生中に増加します。したがって、臨床的には、血清中のヒアルロン酸のレベルは、さまざまな疾患の変化を反映するために使用することができ、補助診断のための大きな意義があります。

 

Hyaluronic acid is widely used in food, cosmetics, daily necessities and medicine. Its application in functional skin care products, ophthalmology and orthopedics is relatively mature. There is still huge potential for its application in the food industry. Oral hyaluronic acid is milder than external application and injection, and can stimulate vitality from the inside out. In January 2021, the National Health Commission approved the addition of hyaluronic acid as a new raw material for food to be added to ordinary foods. This indicates that the application of hyaluronic acid in the food sector will see large-scale growth. In addition, there are many modification sites on the hyaluronic acid molecule, and modification of its active groups, such as cross-linking, esterification, and grafting, gives it better physicochemical properties and resistance to enzymatic hydrolysis [66], allowing hyaluronic acid to be used in more complex environments. With technological progress, the application of hyaluronic acid in various fields will become more and more in-depth.

 

5結論と展望

Hyaluronic acid has important physical and chemical properties and physiological functions. It has a wide range of applications and a large market demand. Global sales of hyaluronic acid raw materials are showing an upward trend. At present, the main methods for industrial production of hyaluronic acid are animal tissue extraction and microbial fermentation. The microbial fermentation method has the advantages of low cost and easy mass production. With the continuous expansion of hyaluronic acid application scenarios and the growing market demand, establishing an efficient and safe hyaluronic acid extraction and purification process, modifying hyaluronic acid molecules to produce specific molecular weight hyaluronic acid that meets different application scenarios will become research hotspots.

 

参照

【1】zhang k, jian j,  張z p .構造上の研究の進捗状況,特性,modi-  fication  and  application  of hyaluronic  酸か[J]。 ポリマー 公報」を発表 2015年9:217 226−です

[2] jeon o, song s j, lee k, et al。机械的强度  架橋ヒアルロン酸ハイドロゲルの分解挙動at  various  架橋 密度[J]。 炭水化物 2007年高分子 70(3): 251−257。

[3] 船尾GコーガンŠOLTES LR,らヒアルロン酸:幅広い生物医学的および工業的用途を持つ天然の生体高分子[j]。バイオテクノロジー手紙、2006年、29(1):17−25。

[4] cowman m k, lee hg, schwertfegerk l, et al。生物学的なヒアルロン酸の含有量とサイズ アジソン病だと組織か[J]フロンティアの免疫2015年(6):261。

[5] hlavacek m .カーティルによる滑膜液濾過の役割-滑膜関節- iの潤滑における年齢。滑膜流体の混合モデル[j]。生物力学紀要進むと1993年1145 26(10):−1160た

[6] KをP MAłGORZATA K JACEKらの オキシダット-変形性関節症患者におけるive性ストレス疾患の発生に発生する可能性のある補償効果の評価の試み- nt [j]。2019年Medicina 55(5): 150騎だった

[7] ^ a b c d e f g h i g h i g h i g h i g h i g h 酸の誘導体とその治療 effect  on  、炷き 上皮 外科 傷 and  慢性創傷:ランダム化con trolled試験の系統的レビューおよびメタ分析[j]。2012年(平成24年)3月31日:ダイヤ改正。

[8] hotamisligilg s . inflammation, metaflammation and im- munometabolic disorders[j]。自然、542(7640)、2017年177 185−

[9] kojouharov h v, trejo i, chen b m .骨折治癒における炎症のef fectsモデル化[c]//アメリカ Insti - tute 物理学の 会議 シリーズ。 米国 研究所 』文藝春秋、2017年。

[10] グリシュマs pローハンbチャールズd e数値 - vestigation 白血球は回し続ける 癒着 や債券 formation  様々なp-セレクチン密度でコーティングされた表面[j]。」。cell press(2019年). 2019年3月16日閲覧。

[11] ^ a b c d e f g h i ^ a b c d e f g h移行前 in- flammation to proliferation: a critical step during wound healing[j]。セルラー and  分子 生活 科学: 2016年Cmlsは、73(20):3861−3885。

[12] john ch w y, abatangelo g .ヒアルロン酸の機能—  a in wound repair[j]。1999年傷口修理再生7 (2): 79−89歳です

[13] hui e, gimeno k i, guan g, et al。時空間 con—phototunable hyaluronic acid hydrogelsにおける粘弾性の制御[j]。2019年生体高分子20(11日):4126と−4134。

[14] dovedytis m, liu z j, bartlett s . hyaluronic acid and its biomedical applications: a review[j]。人工Regenera-tion 20/20、1:102−113に送る。

[15] slevin m, krupinski j, gaffney jらはヒアルロン酸を媒介する angiogenesis  in  vascular  病は 究明 rhammおよびcd44受容体シグナル伝達経路[j]。マトリクス生物学誌の国際学会マトリクス生物学、ローソクを消し26(1):58-68ますか。

[16] zhong y n, katharina g, cheng l, et al。Hyaluron - ic acid-shelled acid-activatable タキソール全prodrug micelles 効能神経痛・ively 対象 and  treat  CD44-overexpressing human  乳房 腫瘍異種移植in vivo[j]。生体材料、2016:84.250−261。

[17] moseley r, leaver m, walker m, et al。 comparis—in vitroでのhyaff®-11p75、aquacel®、ヒアルロン酸の活性酸素に対する抗酸化特性[j]。2002年Bioma - terials、23(10):2255−2264。

[18] feng n, shi y l, guo f x, et al。効果の研究  経口ヒアルロン酸の皮膚の水分改善とin vivoで  抗酸化作用[J]。2016年食品と薬品18(6):386世代−390た。

[19] yu h h, li w, tong c q .オオサンショウウオの体表面粘液からのヒアルロン酸抽出とその抗酸化活性[j]。^『週刊ファミ通』2018年10月号、18 - 21頁。

[20]郭x p, he y  L 太陽 M L,  et  al.  アプリケーション  of  hyaluronic  acid  in  health   製品か[J]。中国生化医薬雑誌,2002, 23(1): 49番で−51番。

[21] wu b j, ni h  l, zhu m l, et al。研究の進展とヒアルロン酸の応用  酸か[J]。中国美容整形学会誌,2018,29(4): ブロック252−254。

[22] laurent t c .ヒアルロン酸の生化学[j]。^『仙台市史』通史編2、仙台市、1987年、47 - 47頁。

[23]陳 J S  wang j q, yi y, et al。ヒアルロン酸とその研究の進展  派生商品デリバティブのか[J]です  Chinese   誌  of  2015年生命工学、35人(2): 111−118にもなる。

[24] 王c f . hyの申請状況-  aluronic酸か[J]。中国医療機器学会誌,2018,42(1): 74−76、78。

[25] 沙k抽出テクノ- logyに関する研究 of hyaluronic  acid  from the  skin  中国 森 カエル」[D] .長春:吉林農業大学、2004年。

[26] jiang s, liang h .ヒアルロン酸-非常に人気の美容ツール[j]。健康世界20/20(2):25−27 .

[27] mary k . c ., shiro m . hyalur- onan構造への実験的アプローチ[j]。2005年炭水化物研究、340(5):791−809ます

[28] trivedi n, baghel r s, bothwell j, et al。海洋大藻類バイオマスから燃料および化学物質を抽出するためのinteg定格プロセス[j]。科学记事、2016年、6(1):30728。

[29] 李y徐j  mei j f, et al。ヒアルロン酸の抽出プロセスに関する研究  マグロ目からか[J]。浙江工業大学紀要 46(3): 276人、2018年−281通り。

[30] arinobu y, atamas s p, otsuka t, et al。分子クローン マウスhaと推定される特性 syn - thase [J]。1996年生物化学専攻271(38):23400−23406。

[31] donatella c, ileana d i, elisabetta c, et al。En - gineering s等身subsp。zoepidemicusはヒアルロン酸の同時性に向かって  acid    and    コンドロイチン  biopolymers   of   生物医学趣味か[J]です。2017年AMB急行、7(1):61。

[32] pan n c, pereira h c b, silva m l c, et al。改良された-サトウキビ糖蜜におけるstreptococcus zooepidemicusによるヒアルロン酸の生産スガルケイン糖蜜[j]。バイオテクノロジーおよびAp - " "贈物化学、182(1):276人、2017年−293。

[33] jin p, kang z, yuan p h, et al。代謝的に操作された枯草菌による特異的分子量ヒアルロン酸の生産168[j]。^ ab c d e f g h i 2016、35 - 21頁。

[34] wei c b, du g c, chen j, et al。設計された  ヒアルロン酸オリゴ糖ストレプトコッカス発酵株  zooepidemicus [J]。中国生物工学会誌,2019, 35(5): 805−815便で隣に座ってたんだ

[35] adam w, westbroo k, xiang r, et al。枯草菌(bacillus subtilis)におけるヒアルロン酸の異種産生を強化するための代謝剤[j]。代謝工学、2018年、47:401−413を有する。

[36] SUNGUROğLU C、SEZGIN D E AYTAR C Pら組換えlactococcus lactisにおける高濃度ヒアルロン酸産生[j]。Preparative生化学&バイオテクノロジーや、2018年までに48(8日): 742 734−みろ

[37] cheng f, yu h, stephanopoulo g, et al。 エンジニア- corynebacterium glutamicum hyaの高濃度生合成のための-ルロン酸[j]。2019年代謝工学55:276−289。

[38] 山田貴,川崎貴。hyalur- onanとキチンの微生物合成:新しいアプローチ[j]。2005年Biosci Bioeng、 99(6): 521-528。

[39] sadhasivam g, muthuvel a .海洋生物からのヒアルロン酸の分離と特性[j]。^ a b c d e『食と食の研究』、2014年、76 - 76頁。

[40] kalkandelen c, su s, saatcioglu e, et al。hyalur—雄鶏の巣からのonic acid production and analysis from rooster comb[c]// 2020 med—ical technologies congress (tiptekno)。アンタリア20/20:1−4にある。

[41] urgeova e, vulganova k .卵殻膜からの多糖類の酵素加水分解の比較[j]。2016年Nova - Biotechnologica et Chimica 15(2): 133回犯し−141。

[42] chen s j, chen h, gao r c, et al。超音波でティラピア目からヒアルロン酸を抽出するための技術条件-as  sisted enzymatic  加水分解[J]。 誌 of  核 農業 2014年28(8):1452−1446。

[43] gao j j, yang s l .高の生産に関する研究進捗状況 裳- lecular  weight   hyaluronic   acid   by   microbial   発酵か[J]。中国の生物工学誌,2017,37(5):118 - 125。

[44] dong z h .突然変異育種と発酵によるヒアルロン酸生産の分子量制御技術に関する研究[d]。杭州:zheji - ang university of technology, 2017。

[45] 名カラミM K SHAHRAKY M RANJBAR M,ら 低分子ヒアルロン酸の前paration, purification, and characterization of low-molecular-weightヒアルロン酸[j]。バイオテクノロジー手紙、2021年まで、43(1面)133回犯し−142。

[46]  liu j l, zhao g q, li z m, et al。streptococcus equisimilisで合成したヒアルロン酸の分子量に対する培養条件の影響[j]。食品生物科学科会雑誌』、2015 34(2)・209−214。

[47] 天貝i、田代y、小川h .魚類の眼球からのヒアルロン酸抽出法の改良ほ乳類の特性評価[j]。2009年水産科学、75(3):805−810。

[48] li y, shi s, yang x, et al。トウモロコシからの多糖のa-amylaseに対する脱タンパク質化、抗酸化作用、および阻害作用[j]。biochem biotechnol, 2019, 15(2): 83 - 90。

[49] song l, meng g q, guo y f, et al。発酵培養液中におけるヒアルロン酸の抽出・精製プロセスに関する研究[j]。山東農科49(3):、2017年134−139。

[50] カバルカンティa d d,メロb a g,オリベイラr c, et al。沈殿による高モル質量バイオヒアルロン酸の回収と純度 戦略 変調 by  pH  and  sodium  塩化[J]。biochem biotechnol, 2019, 188: 527 - 539。

[51] CAVALCANTI A、メロウB、対ウェイン・フェレイラB、らヒアルロン酸精製の主要な下流操作のanceを行う[j]。2020生化学過程99:160−170。

[52] gozke g, kirschhofer f, prechtl c, et al。電気-濾過  改善  うだつ  filtration   of  hyaluronic   acid   そして、従来の方法の技術的課題を克服する代替下流処理ステップを提示する[j]。2017年(平成29年)3月17日:797号系統を廃止。

[53] wei l n, wang y, wei d b, et al。plateau zokor tis由来ヒアルロン酸抽出技術と分子特性- sues [j]。バイオテクノロジー公報、2017年、33(3):151−161。

[54] ni h s, li r, he y l, et al。 浄化 of  hyaluronic  acid  by  ion  exchange  宇宙か[J]いる^『中国新聞』2001年11月11日、5 - 8頁。

[55] liu s, wang j z . the charac-ヒアルロン酸のteristics and its application in food[j]。^ a b c d e f g h『化学工学』、2018年、84頁。

[56] cha s h, wang j l, lian c c, et al。開発  ヒアルロン酸コラーゲン石糖鳥の'sの巣と皮膚の水分を改善する上でその効果[j]。食品業界、2020 41(2):ギター129−134た

[57]「姜Q Y、  ling p x, cheng y n, et al。経口ヒアルロン酸の分布  動物か[J]。中国生化医薬雑誌,2008, 29(2): 73−76。

[58] zhu c, zhu y, wei w, et al。クマリン修飾ヒアルロン酸顆粒乳化剤の調製と応用[j]。紀要 2016年Func - tional高分子29(4):388−396。

[59]福 S  Y 李 J。 Research  on  the  進歩 of  顔  マスクか[J]。2017年化学管理、26:117−119よ

[60]夢l l杜t  wang x x, et al。ヒアルロン酸の応用に関する研究の進展  acid  in   化粧品か[J]。   山東   化学  産業・2018年 47(18): 52−54、56 .

[61] xu h y, wang h y, xiao x h, et al。歯磨き粉におけるヒアルロン酸の応用[j]。^『人事興信録』第2版、人事興信録第6版、17頁。

[62] yang w, chen z h, yi z y, et al。の効果 ヒアルロン酸とプラセボの関節内注射 治療-  ment  初期の and  midstage 膝 より: A  (クォン・ジョン  無作為化、二重盲検、対照試験、臨床試験に基づく[j]。  中国の組織工学研究,2021,25(23):3760 - 3766。

[63] liu l t, wu l, zeng d l, et al。injec- tionのためのヒアルロン酸の応用の進歩[j]。^『仙台市史』通史編3(仙台市史)352 - 355頁。

[64] ma y, peng p, zhao q .適用効果  顔面レーザー手術後の患者の皮膚修復におけるヒアルロン酸スプレーの安全性[j]。2020年臨床医学研究・診療 5日(36):175−177だった。

[65] yu h l . clinical 観察 of  0.3% sodium  hyaluronate  結合 ドライアイの治療にプラノプロフェンを使用して[j]。日本臨床医学会誌,2019,6(60):71。

[66] hu l j, liu f l, li l c, et al。合成  両親媒性ヒアルロン酸誘導体と抗腫瘍ナノドラッグ送達への応用 システムか[J]。製薬の進展  科学や2017年、41人(11日):804−811。

ついて来て
一覧に戻る
Prev

ヒアルロン酸の臨床用途に関する研究

ヒアルロン酸の使用について知っておくべきことは何ですか?

詳細が必要な場合は、連絡してください.