astragalus多糖類抽出物の使用は何ですか?
黄耆is the root のAstragalus membranaceus in the genus Astragalus, family Leguminosae。 Astragalus polysaccharide is a substance proposed from Astragalus membranaceus, and the content of astragalus 多糖類varies among different places of origin, with the highest content in Astragalus membranaceus produced in Gansu [1]. In recent years, astragalus polysaccharides have been found to have antioxidant[6], anti-apoptotic[7], anti-inflammatory[8], immunomodulatory[9], and antimicrobial[10] effects in pigs[2], chickens[3], and rats[4], as well as in vitro experiments[5] .
With the rapid development of pig farming and feed industry, “anti-reduction” has become a trend nowadays. As a green additive, astragalus polysaccharide can improve the production performance and avoid the environmental problems caused によってantibiotics. Therefore, this paper summarizes the physiological functions and mechanisms of Astragali polysaccharides at home and abroad in recent years, and gives an overview of the application effects in swine production, with a view to providing references for the use of Astragali polysaccharides in pig breeding.
多糖類astragalus polysaccharideの物理化学的性質
Astragalus polysaccharide is the active ingredient伝統的な中国医学のastragalusで,色の黄褐色,ラムノースから構成,アラビノース,キシロース,マンノース,ガラクトースと一般的な砂糖[11]。アストラガルス多糖の分子量は80 ~ 160 kdaであり、明らかな生物学的活性を有する[12]。
2多糖類の生理機能と作用機序
2.1抗酸化作用
In the process of energy 代謝, the mitochondria in the cells will generate a large number of free radicals, which will cause various cellular damages. Astragali polysaccharides can directly or indirectly destroy free radicals and their oxidized products. 2.1.1 Direct Scavenging of Free Radicals
2.1.1フリーラジカルの直接掃討
In the presence of oxygen and metal ions (e.g., Fe2+ and Cu2+ ), mitochondria produce a group of strong oxidizing groups in energy metabolism, such as superoxide anion (O2- ), hydroxyl radical (OH- ), and 1,1-diphenyl-2-phenylhydrazine radical (DPPH- ). Ni Huiyan etal [13] found that astragalus polysaccharides had scavenging effects on DPPH-, OH-, and O2- in an in vitro antioxidant assay. のscavenging efficiency of astragalus polysaccharides in scavenging free radicals was concentration-dependent.
luo nanら[14]は、アストラガリ多糖類溶液の濃度が0.1 mg/ mlから0.9 mg/ mlに増加し、oh除去の効率が増加することを発見したアストラガリ多糖類の濃度そして、最も高い回収効率は0.9 mg/ mlであった。しかし、アストラガリ多糖のフリーラジカル除去能力に限界があるのかどうかは分かっていない。
The scavenging of free radicals by astragalus polysaccharides is mainly caused by the following two aspects: OH- and O2- can combine with OH- and H+ provided by each monosaccharide group in astragalus polysaccharides to form stable compound water, thus scavenging free radicals [15- 16]; astragalus polysaccharides, as a kind of polysaccharide plant extracts, the OH- of polysaccharides can be complexed with Fe2+ and Cu2+, which are necessary for the generation of free radicals, thus reducing the generation of free radicals [17]. The OH- on polysaccharides can complex with Fe2+ and Cu2+, which are essential for the production of free radicals, thus reducing the production of free radicals [17]. However, the above studies were all conducted in vitro, and the in vivo scavenging of free radicals by Astragalus polysaccharides is still not perfect and needs further research.
2.1.2活性酸素種(ros)のレベルを阻害し、ペルオキシダーゼの活性を増加させる
Reactive oxygen species (ROS) are derivatives of free radicals. In the process of electron transfer in the mitochondrial respiratory chain, part of the oxygen is not fully oxidized to produce ROS [18]. It has been found that astragalus polysaccharide reduces the generation of ROS in myocytes[19] and 内皮cells[20]by maintaining the stability of the mitochondrial respiratory chain. When the content of ROS and free radicals increases in the body, the content of peroxides will also increase. Therefore, various peroxidases [e.g., superoxide dismutase (SOD), glutathione peroxidase (GSH- PX)] are produced in the body to scavenge excess peroxides and free radicals.
Xu Shengming et al [21] increased SOD and GSH-P1 activities in the blood of weaned piglets by 8.8% and 104.5%, respectively, with the addition of Astragalus polysaccharide to their diets。chen weiらは[22]、アストラガルス多糖は、sod2mrnaとsod2活性の発現レベルを増加させることによって、トランスジェニックsod2 +/-マウスのペルオキシダーゼ遺伝子の機能障害を改善することを発見した。そのメカニズムは、アストラガルス多糖類がアデニル酸活性化プロテインキナーゼ(ampk)を活性化してペルオキシダーゼ遺伝子の発現レベルを高め、その後ペルオキシダーゼ活性を高めるというものである[23]。しかし、ampkがペルオキシダーゼ活性をどのように制御しているのかは、まだ解明されていない。
2.2 Anti-apoptosis
Apoptosis is mainly realized through the mitochondrial pathway, endoplasmic reticulum stress and death receptor pathway. In the present study, only the mitochondrial pathway and endoplasmic reticulum stress were found to have the anti-apoptotic function of Astragaliだ
2.2.1ミトコンドリア膜の安定化
The stability of mitochondrial membrane plays an important role in the process of apoptosis. Excessive Ca2+, B-セルlymphoma-2 protein (Bcl-2) and Bcl-2-related X protein (Bax) can alter the permeability of mitochondrial membranes, resulting in the release of cytochrome C from mitochondria into the cytosol, and ultimately activating the cysteine-aspartate protease caspase3 to induce apoptosis. Fan Zongjing et al.[24] found that astragalus polysaccharide could significantly reduce the concentration of Ca2+ in cardiomyocytes during transient ischemia and hypoxia, alleviate the damage of transient ischemia and hypoxia on the outer membrane of mitochondria, and avoid apoptosis of cardiomyocytes.
sunら[25]は、アストラガリ多糖類が、bcl-2の発現を増強してbaxの発現を阻害することで、ミトコンドリアのbcl-2とbaxの比率を増加させてアポトーシスを阻害することを発見した。liuら[26]は、アストラガリ多糖類がパーキンソン中のミトコンドリアに対して一定の保護効果を有することを発見した's disease mouse model, thus reducing the release of cytochrome C from mitochondria. Liu et al.[26] found that astragalus polysaccharide could have a certain protective effect on mitochondria, thus reducing the release of cytochrome C from mitochondria and avoiding apoptosis. Wei Pingting et al.[27] found that astragalus polysaccharide could significantly reduce the expression of caspase 3 protein in the renal tissue of rats affected by ephedrine, and reduce the apoptosis of renal tissue cells, thus slowing down the damage of ephedrine to the renal tissue of rats.
2.2.2小胞体ストレス(ers)
小胞体ストレス(ers)はアポトーシスの主要な経路の1つであり、ersは主にc / ebpホモール- ogous protein (chop)、c-junアミノ-末端キナーゼ(jnk)経路およびカスパーゼ12を介してアポトーシスを誘導する[28]。c-junのjnk (amino-terminal kinase)経路とcaspase 12によるアポトーシス[28]。ersの強力な効果の下で、活性化転写因子(atf)6の増加とprkr-like endoplasmic reticulum kinase (perk)の過剰発現がchopの増加を引き起こし、bcl-2のアポトーシス誘導を阻害することができた。chopはbcl-2のアポトーシスを阻害することができる。
In a diabetic rat model, astragalus polysaccharide reduced CHOP protein synthesis by inhibiting ATF6 activation [29] and decreasing PERK expression [30] [31]. Prolonged ERS continuously activates inositol need enzymes (IER)1, which in turn transmits apoptotic signals to the JNK pathway to cause apoptosis [32]. Ouyang Jingping et al [33] found that astragalus polysaccharide could inhibit the activation of IER1 in a diabetic rat model. In a cardiac ischemia perfusion model, astragali polysaccharides increased the Bcl-2 to Bax ratio in cardiomyocytes by inhibiting the activation of JNK and prevented cardiomyocyte apoptosis [34]. Meanwhile, caspase 12, the initiator of apoptosis, can activate caspase 3 and induce apoptosis. In a diabetic rat model, astragali polysaccharide inhibited the expression of caspase 12 to reduce the apoptosis rate of cardiomyocytes[35] .
In summary, astragaloside can reduce apoptosis by maintaining the stability of mitochondrial membrane and reducing endoplasmic reticulum stress. However, the specific mechanism of astragalus polysaccharide in reducing apoptosis through the death receptor pathway needs to be further investigated.
2.3消炎
Nuclear transcription factor-κ B (NF-κ B) plays an important role in inflammation. Under the stimulation of inflammatory mediators, inhibitory protein-κ B (Iκ B) in the cytosol is phosphorylated and detached from NF-κ B, thus activating NF-κ B [36]. Activated NF-κ B can enter the cell nucleus and regulate the expression of a series of pro-inflammatory genes, thus enhancing the inflammatory response [37]. It has been found that astragalus polysaccharide can inhibit the activation of NF-κ B in cells [38] and prevent the phosphorylation of Iκ B [39], reduce the level of activated NF-κ B in cells, and thus slow down inflammation. Cheng Yan[40] and others found that astragalus polysaccharides inhibited the expression of inflammatory mediators and reduced the release of inflammatory mediators in a mouse model of sepsis, thus preventing the damage of sepsis to cardiomyocytes. Some proteases are also involved in the inflammatory process, such as cyclooxygenase (COX), which catalyzes the production of prostaglandins from arachidonic acid, allowing inflammation to spread. Liu Ling et al.[41] found that astragalus polysaccharides inhibit the expression of the COX gene, thus reducing the production of COX enzyme and playing an anti-inflammatory role.
In summary, astragalus polysaccharide can be used as an anti-inflammatory agent in three ways: first, it can reduce the level of activated NF-κ B, thus reducing the production of pro-inflammatory mediators; second, it can inhibit the expression of inflammatory mediators, thus lowering the level of inflammatory mediators; and third, it can change the activity of inflammatory enzymes through the regulation of the genes of inflammation-related enzymes, thus exerting its effect of inhibiting inflammation.
2.4免疫の調節
2.4.1免疫器官の発達を強化する
動物の強さ's immunity is determined by the development of its immune organs (e.g. spleen, thymus, bursa). Xiang Shuangyun et アル[3] significantly increased the spleen and bursa indices of laying hens by injecting them with Astragalus polysaccharide for 3 consecutive days before vaccination against Newcastle disease. Zhang et al. [42] found that feeding Astragali polysaccharide solution to rats vaccinated against foot-and-mouth disease virus stimulated the proliferation of rat spleen cells, and LI et al. [43] found that injecting Astragali polysaccharide solution into pigs vaccinated against foot-and-mouth disease virus significantly increased the quality of their spleens.
2.4.2免疫細胞の増強
Immune cells mainly include T cells, B cells, macrophages and so on. Among them, T cells are the main cells in cellular immunity, which are mainly divided into two subpopulations-CD4+ and CD8+ according to their functions [44], and the ratio of CD4+/CD8+ can be used to measure the immunity performance of the body [45]. It was found that astragalus polysaccharide increased the number of T cells by increasing the CD4+/CD8+ ratio in breeding sows, which in turn improved the immune performance of breeding sows [9]. Wang Chaofeng et al.[46] showed that the addition of astragalus polysaccharide to diets significantly increased the CD4+ in the blood of weaned piglets, which in turn increased the CD4+/CD8+ ratio and enhanced the immunity of piglets.
侯Xi'e et al.[47] injected lactating piglets with astragali polysaccharide solution and found that astragali polysaccharide reduced CD8+ in piglets and induced B cells to secrete more globulins. γ-Interferon-γ (IFN-γ ) is a water-soluble glycoprotein, produced by activated T cells. IFN-γ can promote T cell differentiation and enhance cellular immunity by up-regulating the transcription factor T-bet. Yao Jingming et al [48] injected pigs vaccinated against swine fever with astragalus polysaccharide solution, which could significantly increase the IFN-γ content in pigs vaccinated against swine fever, promote T cell differentiation, and then enhance cellular immunity. Toll-like receptors (TLR4) play an important role in the immune function of phagocytes, and it has been found that the polysaccharide structure of astragalus polysaccharides activates phagocytes by binding to TLR4 on the surface of phagocytes, thus stimulating the secretion of immune-related effectors by phagocytes, and thus enhancing the immune ability of phagocytes [49-51].
2.5抗菌
Astragalus polysaccharide has antibacterial properties [10]. In vitro antimicrobial tests showed that astragalus polysaccharides inhibited Escherichia coli, Streptococcus and Staphylococcus aureus, but the inhibitory effect was most obvious in E. coli [52]. Xie Hongbing et al [53] added 800 mg/kg astragalus polysaccharide to the diet of weaned piglets and found that the number of E. coli in the intestinal tract of weaned piglets in the astragalus polysaccharide group was significantly reduced compared with that of the control group.Li [54] et al. added 200 mg/kg astragalus polysaccharide to the diet of 1-day-old hens and carried out a feeding trial for 42 days, and found that the number of E. coli in the ileum and the cecum of the hens was reduced by 4% and 6%, respectively.5
The antibacterial effect of astragalus polysaccharide on the intestinal tract of 1-day-old hens was also found to be significant. The main mechanism of antibacterial effect of astragalus polysaccharide is as follows: astragalus polysaccharide promotes the development of intestinal villi, increases the number of tonsils and lymph nodes in the intestine, and enhances intestinal immune function, which in turn induces the proliferation of Lactobacillus and Bifidobacterium in the intestinal tract [55]. As a result, the production efficiency of Lactobacillus and Bifidobacterium in the decomposition of food to produce organic acids is greatly increased, which in turn lowers the pH in the intestine to inhibit the growth of pathogenic bacteria in the intestine [56]. In summary, in the animal in vivo test, the effect of Astragali polysaccharide on E. coli was significant, but there is a lack of accurate data on the inhibitory effect on other pathogenic bacteria, which needs to be investigated.
3 .ブタの生産に対するアストラガルス多糖類の影響
3.1豚の生産の成長への影響
From Table 1, it can be seen that adding Astragalus polysaccharide to feed養豚の生産能力を向上させることができます。机序は主に2つの側面によって引き起こされ、一方で、多糖類は、腸上皮細胞と小腸絨毛の成長を促進することができ、それによって、腸管の発達を促進し、直接腸の消化と吸収の効率を向上させる栄養素[60];一方、多糖類は善玉菌の数を増やし、善玉菌が炭水化物を分解して腸管に入ってくると、有機酸に簡単に吸収され、間接的に腸管に栄養素の吸収を促進する[56]。
On the other hand, astragalus polysaccharide increases the number of beneficial bacteria, which makes them decompose carbohydrates into organic acids, thus indirectly promoting the intestinal absorption of nutrients [56]. However, when the amount of astragalus polysaccharide is added to the diet is too large, astragalus polysaccharide will increase the viscosity of the chow in the gastrointestinal tract, reduce the interaction between digestive enzymes and chow, and then reduce the digestibility, which will ultimately affect the production performance of growing pigs [61]. To summarize, adding suitable concentration of astragalus polysaccharide to the diet can improve the performance of growing pigs.
3.3イノシシの精液への影響
冷凍希釈液に0.3 mg/ mlのアストラガルス多糖類を添加すると、イノシシ精液の冷凍保存効果が有意に向上することがわかった[67]。liu yingらは、低温希釈液に0.04 mg/ ml、0.06 mg/ ml、0.08 mg/ ml、0.10 mg/ mlのアストラガルス多糖類を添加し、0.08 mg/ mlのアストラガルス多糖類がイノシシ精液の保存に最も効果的であることを発見した。冷凍加工過程誘導することができますがロスの生产ブタ精巣质と脂质peroxidation饱和脂肪酸とプラズマ膜の中にあり、酸化障害を引き起こす(69)耆のcatalaseの多糖類の活動を増進させることが出来るとその精子mRNA表現(70)と同時に、精子の过度ロスを解消できるというミトコンドリア(71)を分泌するようspermatozoa's ability to resist oxidative stress. However, different scholars have different opinions on the appropriate concentration of astragalus polysaccharide. This may be due to the different molecular weights of astragalus polysaccharides. The origin, extraction method and molecular weight of astragalus polysaccharides should be considered when adding astragalus polysaccharides to feeds. Detailed data on the effect of astragalosides on semen formation are not available.
4概要
In summary, astragalus polysaccharides have specific physiological functions, and their application in swine production has achieved preliminary results in recent years. In order to better meet the future goal of “antimicrobial-free farming” and to better utilize astragalosides, in-depth studies are needed in the following aspects: 1) to explore a new extraction method of astragalosides and to improve the efficiency of astragaloside extraction; 2) to investigate the appropriate concentration of astragalosides in feed for different breeds of pigs and at different stages of growth and to study the side effects and their mechanisms caused by excessive additions; 3) to study the effect of astragalosides on the diets of pigs of different breeds and growth stages. 2) Explore the appropriate concentration of astragalus polysaccharide in feed for different breeds of pigs and different growth stages, and study the side effects caused by over-addition of astragalus polysaccharide and its mechanism; 3) Explore the effect and mechanism of the combined application of astragalus polysaccharide with other plant polysaccharides, probiotic bacteria, and traditional Chinese medicines to improve the performance of pigs.
参照:
[1] zhu shangwen, wei jia, xu yongzhen, et al。astragalusの内容別の起源からのastragalusの多糖類とその抗疲労とnormobaric低酸素耐性効果[j]。陝西中医薬大学紀要,2016,39(1):86-89。
[2] li xingru、li shaowei、zhang yameiら豚の温熱療法のための多糖類アサガエルと組み合わせた高用量豚熱ワクチン[j]。中国の獣医学雑誌,2011,13(6):63-63。
【3】向双雲、周真輝、曹錦遠。アストラガルス多糖類のニワトリニューカッスル病ワクチンの免疫効果に対する影響[j]。おい研究だ、2017年(24):38-41だ。
[4]韓林、王洪信、如美偉。アポトーシスを耆の多糖類減衰LPS-induced抑制するマウスcardiomyocytesするためNF ~κBとJNKシグナリングパスか[J]。中国薬理学公報」を発表した。2018年34(2):243-249。
[5] ma jinyun, wang jinying, sun yuらマウスにおけるeaeの阻害とアストラガラス多糖によるbv-2神経ミクログリア活性化の調節に関する実験的研究[j]。chinese journal of immunology, 2018,34(3):381- 387。
[6] yang f, yan g, li y,et al. astragalus多糖類は、ミトコンドリアのrosを抑制することにより、鉄過負荷による間葉系幹細胞の機能障害を弱化させた。セルラー生理的&ある2016年生化学39(4):1369-1379。
Ma L T[7]鄭J dao,仁Q Y、et al.The耆の多糖類の影響力やβ-elemeneたLX-2携帯成長のアポトーシスとac - tivationか[J]。Bmcリウマチ胶原病、2014年、14(1面)224人である。
[8] yue s、jian l、lei wら補助関節炎ラットにおけるkeap1 / nrf2を介した心機能に対するアストラガス・ポリサックカリドの効果改善[j]。^『仙台市史』通史編(通史編)、通史編(通史編)、2016年、143- 153頁。
【9】liu xinping, chen chong, fu shuguang, chen ling, yuan jiuxiang。多糖アストラガルスの豚熱混合性豚における免疫抑制効果の改善[j]。江西師範大学科学技術研究院,2015(6):36-39。
[10] sun bo, chen jing, liu jiang, et al。腸内フローラおよびブロイラーの免疫器官指標に対するアストラガルス多糖類添加の影響[j]。^『岡崎市史』岡崎市史編纂委員会、2014年(平成26年)、86-88頁。
[11]劉彦中、張福軍。獣医薬アストラガルス多糖類のアプリケーションへの導入[j]。^ a b c de f g h『科学技術の歴史』、2010年、210-210頁。
【12】江広之。アストラガルス多糖類によるブルーイヤーウイルス感染に対する免疫調節と抵抗性に関する研究[d]。合肥:安徽农业大学2015年
【13】ni huiyan, chen wei, song wenjing。多糖類の抗酸化作用に関する研究[j]。中国医学雑誌,2017,32(9):17005 -1707。
[14] luo n, xu ly, ruan hh, et al。多糖類の抗酸化活性に関する研究[j]。アストラガルス多糖類の抗酸化活性に関する研究[j]。
[15] sun chengwen, jiang yan, zhong guo gan, et al。多糖類の抗酸化損傷に関する研究[j]。中国薬理学会誌,1996(2):161-163。
[16] wang jianhang, li yu, liu anjun。マツからの多糖類の抽出と抗酸化作用[j]。2006年(平成18年)3月27日:ダイヤ改正。
【17】趙林靖、宋小平、頼方雅多糖類およびその誘導体の抗酸化特性に関する研究の進展[j]。上海工程技術大学ジャーナル、2008(1):44-47。
[18]耿俊衛、于韓、林之。動物細胞における活性酸素の生成と代謝[j]。2015年生命科学、27(5):609-617。
[19] huang y f, lu l, zhu d j,et al of ミトコンドリア 力学 誘導 by 酸化 ストレスか[J]。酸化医学&2016年セルラー長寿(10):用いて説明する。
[20] 漢 唐 ルゥ et al. Astragalus polysaccharide H2O2から構成されるameliorates -induced 人間 噬臍の 静脈 endothelial cell 負傷 [J]。分子医学研究会,2017,15(6):4027-4034。