高麗人参エキスギンセノシドの異なる種類の研究

3月01,2025
カテゴリ:健康食材

Ginsenosides (GS)高麗人参、高麗人参、アメリカ人参などの貴重な薬草の主な有効成分です。これらはトリテルペノイド配糖体に属し、配糖体(ギンセノシド)と糖基から構成される[1]。ギンセノシドは、抗腫瘍作用[2]、抗炎症作用[3]、抗疲労作用[4-5]、抗酸化作用[6]など幅広い生物活性を有しており、二次性のギンセノシドはさらに優れた活性を示す。しかし、高活性二次ギンセノシドは、低含有量、低水溶性、低生物学的利用能、短い半減期などの問題を有し[7]、食品医療や生物医学の分野でのギンセノシドの適用が制限されている。

 

Structural modification is an important means to improve の生物活動のginsenosides, improve pharmacokinetic properties とreduce toxicity。 Ginsenosides are usually composed ののhydrophobic aglycone linked to 1–4 hydrophilic sugar moieties, so they can be modified でthese two ways。 At present, のmodificatiにのginsenosides mainly adopts chemical modificatiにstrategies, とginsenoside 派生商品with better activity とphysicochemical properties are obtained によってmodifying the aglycone structure or modifying the sugar chaで[8]。 In terms のstructure, the cycloalkane structure のaglycone is stable, とit is difficult to directly modify the aglycone backbone.

 

The current main modificatiにstrategies focus on the hydroxyl group on the aglycone, と派生商品with diverse structures are obtained through synthetic methods such としてesterification, oxidation, the introduction のheterocycles, or molecular hybridization. Modifications to the sugar chain mainly involve the extension のthe sugar moiety or modification のhydroxyl group on the sugar chain. Studies have shown that the type, number and binding site のthe sugar group on the ginsenoside parent nucleus are closely related to the biological activity of ginsenosides [18-20]. In general, the relationship between the number of sugar groups and the anti-tumoractivity of ginsenosides is as follows: aglycone > monosaccharide glycoside > disaccharide glycoside > trisaccharide glycoside > tetrasaccharide glycoside. Therefore, modifying the sugar chains of ginsenosides is of great significance for improving をbiological activity. This paper reviews recent progress in the chemical modification and biological activity of ginsenosides, elucidates the structure-activity relationship, and summarizes the characteristics and laws of structural modification of ginsenosides, providing a reference for subsequent structural modification.

 

Ginseng extract powder


1ギンセノシドの分類と構造的特徴

アグリコンの構造の違いにより、ダムマラン型、オレアナン型、オコチロール型の3つのタイプに分けることができます。Dammarane-typeginsenosides can be further subdivided into protopanaxdiol (PPD) and propanaxatriol (PPT) according to the position of the substituent group attached to the aglycone.

 

1.1 Dammaraneタイプ

Dammarane-type ginsenosides include PPD and protopanaxatriol (PPT), which are tricyclic triterpene saponins. Common protopanaxadiol ginsenosides include C-K (1), Rh2(2), Rd (3), Rg3 (4), Rb1 (5), Ra1, Ra2, Ra3, Rb2 and panaxadiol (PD) (Fig. 1). Since ginsenosides 1, 2, 4 and 5 have stronger biological activity, their 合成and modification have attracted much attention [9-11]. Common protopanaxatriol-type ginsenosides mainly include Rh1 (6), Rg1 (7), Rg2 (8), Re, Rf, F1, F3, F5 and glycosylated panaxatriol (PT) (see Figure 2), among which 6, 7 and 8 have been studied extensively [8, 12].

 

1.2オレアノール酸型

Oleanolic acid type ginsenosides are pentacyclic triterpene saponins, which are formed by the glycosylation of oleanane type saponins (OATS) at the C-3 and C-28 positions. Common oleanolic acid-type ginsenosides include R3 (9), Ro (10), and R4 (11), among others [13-14] (see Figure 3).

 

1.3 Ocotillolタイプ

Ocotillol typesapogenins (OTS) can form four conformations: (20S24S), (20R,24R), (20S, 24R) and (20R,24S), depending on the configuration of the C-20 and C-24 linked sugar moieties. Commonly-found ginsenosides of the Oxytropae type include F11 (12), RT5 (13), RT2 (14), etc. [15-17] (see Figure 4).

 

2ギンセノシドの構造変化と構造活性相関

2.1エステル化修正

Ginsenosides水への溶解度が低く、脂肪への溶解度が低いため、生物学的利用能が低下し、健康維持および治療効果が低下します。薬物分子の理想的な親油性は、その生物学的利用能と臨床的有効性を確保するために一定の範囲内である必要がある[8]。薬物動態学的研究によると、ギンセノシドは経口投与後に腸内細菌叢によって加水分解され、加水分解によって生成された代謝物は静脈を介して肝臓に吸収され、そこで脂肪酸と反応して脂肪酸エステル化合物を形成することが示されている[21]。さらなる研究では、脂肪酸と結合したギンセノシド誘導体は、細胞内での細胞毒性が低く、居住時間が長く、より持続的な効果があることが示されている。一方、細胞膜は主に脂質で構成されているため、脂溶性エステル誘導体は膜全体の透過性を向上させ、望ましくない薬剤の経口吸収を促進することができます。この新知見は、ギンセノシドの修飾についての考えをもたらしている。有機酸(脂肪酸、芳香酸、無水)、アミノ酸、無機酸(硫酸)などの酸を用いたギンセノシドの修飾は、ギンセノシド誘導体の研究のための重要な戦略である。

 

2.1.1有機酸の修飾

Liang etアルreacted the hydroxyl group at the C-3 position of ginsenoside Rh2 (20S-Rh2, 2) with two 6-maleimidocaproic acid and 11-maleimidoundecanoic acid derivatives with hydrophilic functional groups and different carbon chain lengths to obtain the esterified derivatives 15 and 16 (see Figure 5). Compared with Rh2, the solubility of the two modified products increased by about 4 times and 2 times, respectively. In vitro anti-proliferation activity tests showed that compound 15, which has a shorter carbon chain, exhibited higher 抑制activity against the HeLa cell line, while compound 16, which has a longer carbon chain, did not show anti-proliferative activity [22]. Li etアルreacted decanoic acid, cyclohexanecarboxylic acid and isobutyric acid reacted with the C-20 hydroxyl group of ginsenoside C-K to synthesize three ginsenoside C-K monoesterified derivatives (17–19) [23] (see Figure 5).

 

の増加抑制政策において乳がんを発症さMCF-7セルでの抑制活動化合物18、19 25μmol / Lを大きく上回ってginsenoside C-K、複合17抑止効果を見せなかった、ことを示すginsenoside派生商品short-chain脂肪酸anti-tumor活動の強化で修飾long-chain脂肪酸で修飾に比べ他の研究[24 - 27]でも修正されているshort-chain fatty acid saponin derivatives not only have optimized physicochemical properties, but also have better anti-tumor 効果than long-chain fatty acid esters.

 

Li etアル合成a fully acetylated derivative of ginsenoside C-K by polyesterification modification, except for the glucose-based C-6 hydroxyl group [28] (see Figure 5). Anti-tumor activity tests showed that compared with C-Kit can inhibit the proliferation of multiple tumor cell lines at lower concentrations, while significantly inhibiting tumor growth in a hepatocellular carcinoma xenograft model without side 効果on major organs.

 

It can be seen that after esterification modification of ginsenoside C-Kits cytotoxicity is reduced and its antitumor activity is increased. Wang etアルreacted the C-3 hydroxyl group of PD with benzoic acid derivatives, amino acids and tetrachlorophthalic anhydride to obtain a series of PD derivatives 21–31 [29] (see Figure 5). Anti-tumor proliferation tests showed that most of the compounds had inhibitory effects on cancer cell lines, including human liver cancer cells HepG-2, human lung cancer cells A549, human breast cancer cells MCF-7, and human colon cancer cells HCT-116. Compared with PDginsenoside derivatives 22, 23, and 26 showed significant inhibitory effects on cancer cell proliferation. for example, 22 had the lowest IC50 value for A549 (IC50 = 18.91 ± 1.03 μmol/L), while for MCF-7 cells, compound 23 showed better inhibitory activity (IC50 = 8.62 ± 0.23 μmol/L). This result shows that the introduction of an aromatic acid into ginsenosides can also significantly improve antitumor activity.

 

The above-mentioned structure-activity relationship shows that the introduction of short-chain fatty acids into ginsenosides exhibits better activity than long-chain fatty acids. The number of esterification modification sites (monoesters and polyesters) and the type of acid (fatty acids and aromatic acids) have no significant 効果on biological activity.

 

2.1.2アミノ酸の修飾

25-Hydroxyl-protopanaxdiol (25-OH-PPD) (34), a 自然compound isolated からginseng fruit,顕著な抗腫瘍活性と低副作用と高い絶対経口バイオアベイラビリティの利点を有します。yuanら[30]は、独自の生理機能と薬効を発揮する非タンパク質アミノ酸と組み合わせ、一連の新しい25- oh-ppd誘導体を設計・合成した(図6参照)。例えば9段の複合33反対antitumor活動示し、HCT116 BGC-823セル線4.76μの値がIC50 mol / Lと6.38%μmol / L,(表1参照)。この他、アミノ酸派生物25-OH-PPD(46-59)も展示antitumor活動[31](表1参照)。

 

As can be seen from Table 1, the IC50 values of some non-protein amino acid modified products are greater than 100 μmol/Lwhile the anti-tumor activity of protein amino acid modified products is generally better than that of non-protein amino acid modified products, and their IC50 values are all lower than 30 μmol/L. On the other hand, the amino acids on ginsenoside derivatives with an IC50 value of less than 10 μmol/L for anti-tumor proliferation all have Boc protective groups, and removing the Boc protective groups significantly reduces the anti-tumor activity of the product, which indirectly indicates that increasing the lipid solubility of the product through esterification can significantly increase the biological activity of ginsenoside derivatives.

 

2.1.3無機酸の修飾

現在の無機酸の改質は主にスルホン化試薬のクロロスルホン酸を使って上の水酸基と反応するginsenoside sugar chain to form a sulfonate, which is then converted to a salt by neutralization with pyridine. As the introduction of a sulfate group increases the polarity of the ginsenoside derivative, solubility is improved. It has been reported that the anticancer activity of sea cucumber saponins, which have a similar structure to ginsenosides, is related to the sulfate group,the fewer sulfate groups present on the sugar chain, the stronger the 抗がんactivity [32].

 

 Ginseng extract

Based on these findings, Guo etアル[33] used the chlorosulfonic acid-pyridine method to sulfate modify ginsenosides. The resulting derivative SMTG-d3 enhanced natural killer cell activity by promoting the proliferation of T lymphocytes and the production of IFN-γ and TNF-α cytokines. Compared with ginsenoside, SMTG-d3 not only reduces cytotoxicity, but also further enhances antitumor immune activity. Previously, Fu etアル[34-36] also used this method to convert the C-6 hydroxyl group 20 (S) -ginsenosideRh2to a sulfonate ester and synthesized two new derivatives 60 and 61 with greatly improved solubility (see Figure 7). Further studies have found that both derivatives can enhance 消炎and immune effects by blocking mitogen-activated protein kinase and the 釈放of pro-inflammatory mediators 誘導by activation. This shows that the sulfation of ginsenoside derivatives can increase their solubility, thereby enhancing 活動such as 消炎and anti-tumor effects.

 

酸化2.2修正

The planar double bond on the ginsenoside side chain and the hydroxyl group in the aglycone structure provide reaction sites for oxidation modification, making it possible to oxidize the C-17 side chain and のand C rings of some ginsenosides. Studies have shown that the double bond on the ginsenoside side chain is one of the reasons for its low solubility [37]. Ginsenosides can increase their solubility in water by reducing the degree of unsaturation or adding ionizable groups such as carboxyl groups through oxidative modification, thereby enhancing their biological activity.

 

Wong etアル[38] oxidized the double bond on the side chain of ginsenoside 20(R)-Rh2 (2) to obtained a derivative 20(R)-Rh2E2 (62) that can effectively prevent the development of colorectal cancer induced by oxidized azomethane/dextran sulfate sodium salt (AOM/DSS) (see Figure 8). This epoxide compound also has inhibitory activity against other cancer cell lines. For example, its IC50 for lung cancer cells (LLC-1) is 56 μmol/L.

 

It has been found that PPD is metabolized in the human liver to form C-20-24 epoxide, which contains the Pyxinol skeleton and has good anti-inflammatory activity [39]. Wang etアルepoxidized 20(S)-PPD and then subjected to Dess-Martin oxidation, selective reduction with NaBH4, condensation and deprotection reactions to obtain a series of amino acid-modified C-12 oxidized Pyxinol derivatives [40] (see Figure 9). In vitro cytotoxicity tests showed that most derivatives did not exhibit significant toxic effects.

 

Using the Griess method to test the inhibitory activity of these derivatives on nitric oxide in RAW264.7 macrophages, derivatives 63a, 63b, 63c, 63d, 64e, 66b, and 66c showed good anti-inflammatory activity (inhibition rates of 48% to 85%), even better than Y13 (known as the Pyxinol derivative with the best anti-inflammatory activity at the C-12 site, with a hydroxyl group, and an inhibition rate of <40%) and the clinically approved glucocorticoid steroid drug hydrocortisone sodium succinate. のstructure-activity relationship study showed that oxidation of Pyxinol at the C-12 position can effectively improve the anti-inflammatory activity of derivatives modified at the C-3 position. In particular, N-Boc-protected aromatic amino acids can significantly enhance their anti-inflammatory activity. At the same time, derivatives with the absolute configuration of R at the C-24 position are more active.


Wang etアル[41] used a similar method to selectively oxidize the C-3 position of the Pyxinol skeleton のring and simultaneously introduce a Michael acceptor to prepare 24 novel ginsenoside derivatives (67a-67h, 68a-68h, 69a-69h) (see Figure 10). The structure-activity relationship shows that the fusion of ginsenoside PPD with a Michael acceptor can enhance the anti-inflammatory activity of the derivative, and the presence of an electron-withdrawing group on the Michael acceptor further enhances the anti-inflammatory activity. The anti-inflammatory activity of the derivative obtained by modifying the C-20 position of PPD with a tetrahydrofuran ring was greatly reduced, but the anti-inflammatory activity of the derivative in which the A ring was oxidized was almost unaffected, which further indicates that the anti-inflammatory biological activity of some ginsenosides can be significantly improved by oxidation modification.

 

Zhang etアル[42] hydrolyzed PD and oxidized it using pyridinechlorochromate (PCC), O2, and H2O2 to obtain a series of C-17 side chain and A and C ring oxidation derivatives (see Figure 11). Antitumor cell tests showed that some compounds exhibited better antiproliferative activity than the positive control in six cell lines, including A549 (human lung cancer), 8901 (human ovarian cancer), and other cell lines. For example, in the U87 (human glioma) cell line, compounds 70, 78, 82 and 83 were more effective than the positive control, with compound 82 having an IC50 of 19.51±1.00 μmol/L. In the MCF-7 (human breast cancer) cell line, compared with 5-fluorouracil and PD, compounds 71 and 82 exhibited better antitumor activity (IC50 = 17.73~23.58 μmol/L); compounds 71 and 74 also exhibited good antiproliferative activity in HeLa cells. Studies have shown that introducing an enol structure at the α-site of the A ring of PD derivatives can improve their antitumor activity, but not all oxidative modifications of PD derivatives achieve this effect. For example, the antiproliferative activity of compound 81, which was obtained by further oxidation with H2O2, was reduced.

 

2.3 Heterocyclic修正

Heterocyclic compounds are often used in drug design and synthesis because of their structural diversity and wide range of biological activities, which provides an expansion of the available space for drug-like chemistry. Most marketed drugs contain heterocyclicstructures, with nitrogen heterocycles being the most common in marketed drug structures. The nitrogen heterocycles and oxygen heterocycles commonly found in drug molecules contain lone pairs of electrons, which can form hydrogen bonds, which is conducive to improving water solubility and thus bioavailability. Piperazine rings and piperidine rings are very common nitrogen heterocyclic structures in marketed drugs. They can be further derivatized to establish a small compound library [43], which is conducive to designing more compounds for in-depth structure-activity relationship studies. Studies have shown that the introduction of heterocycles in natural products can greatly enhance the biological activity and solubility of derivatives through the principle of “pharmacophore combination” and an increase in the number of hydrogen bonds [44-45]. At present, a large number of studies have reported on the modification of ginsenoside derivatives with heterocycles. Among them, nitrogen-containing heterocyclic compounds have low cytotoxicity, and exhibit good water solubility, permeability and bioavailability.

 

Pyrazoles are five-membered heterocyclic compounds composed of two adjacent nitrogen atoms. They have a variety of pharmacological activities such as anti-inflammatory, antiviral and antidepressant effects, and are widely used in new drug development [46]. Isoxazole derivatives also have a variety of biological activities such as 抗菌, antiviral and antitumor effects, and are widely used in organic synthesis [47]. Based on this, Dai etアル[48] introduced the pyrazole and isoxazole skeletons into the C-3 position of PD, designed and synthesized 19 PD derivatives containing heterocycles (see Figure 12), and studied their antiproliferative activities against four different tumor cells. The results showed that the products 86 and 87 obtained by fusing the A ring of PD with the pyrazole ring have significant anti-cancer activity. For example, 86 has an IC50 of 14.15±1.13 μmol/L against HepG-2 cells, and 87 has an IC50 of 13.44±1.23 μmol/L against A549, which is four times that of PD. It also has a greater inhibitory effect on the other three tumor cells. However, compounds 88 and 89a–89i have 貧しいwater solubility due to the presence of multiple ester bonds and hydrophobic groups such as aromatic rings, resulting in poor anti-tumor proliferation activity. Substituting the ester bonds in the structures of derivatives 88 and 89a–89i with amide bonds to obtain derivatives 90a–90f did not improve the anti-tumor proliferation activity. On the other hand, the results of in vitro activity tests showed that 87 > 86, 89a > 88, and 90a > 91, which indicates that pyrazole-modified PD derivatives are generally more 活躍than isoxazole compounds.

 

ピラジンおよびピリミジン化合物は幅広い生物活性を示し、これら2種類の構造は市販されている薬剤分子によく見られる[49-50]。wangら[51]導入ピラジン、オキサジアゾール、イソオキサゾール、ピラゾール、ピリミジンなどの複素環式化合物は、酸化、水素化、クレゼンエステル縮合、還元、水酸基の保護および脱保護などの古典的な有機反応を介してppdのc-2位およびc-3位に導入された。一連のheterocyclic融合20 (S) -PPD派生商品説明される(図13を参照)および抑制効果を受容体押しB核要因-κアグリコン(RANKL) -induced破骨細胞分化を评価します。structure-activity関係】PPDに比べ、派生商品をphenylpyrazoleに加えて、抑制をチューニング微分破骨細胞のアプリケーションoxadiazole、isoxazoleとpyrazole派生商品five-membered heterocyclic修正(93、94、95 a)は強くよく似またはちょっと抑制活動(IC50 = 103μmol / L) PPDよりピラジンやピリミジン(92,96a)のような6員環複素環で修飾された化合物の阻害活性は有意に増加する。

 

Based on the excellent activity of compound 96a, the research group further modified the pyrimidine derivatives (see Figure 14). The results showed that at a moderate concentration of 1.0 μmol/L, most derivatives had almost 100% inhibitory effect (except 96f); at a concentration of 0.1 μmol/L, the inhibition effect of the methyl (96b) and ethyl (96c) modified derivatives was significantly enhanced, while the inhibition activity of the methoxy (96d), ethoxy (96e) and amino (96g) modified compounds remained almost unchanged. The researchers further structurally modified 96b with a C-12-hydroxy or C-17 side chain (see Figure 14). The results showed that replacing the hydroxyl group at the C-12 position with a ketone (98), oxime (99), α-hydroxy (100) or acetate (101) group resulted in a significant decrease in inhibitory activity. At a concentration of 0.01 μmol/L, 98–101 showed almost no inhibitory effect. Compound 105 showed the best inhibitory activity (IC50 = 11.8 nmol/L), even at a concentration of 0.01 μmol/L, which was better than PPD activity (IC50 = 10.3 μmol/L), and it could inhibit osteoclastogenesis both in vitro and in vivo.

 

2.4ポリマー修正

Hydrophilic polymer-modified anticancer drugs can not only compensate for their poor targeting, but also improve the water solubility, stability, in volume vivohalf-life and bioavailability of the drug [52]. In recent years, drug delivery technology has developed rapidly, making ginsenosides widely studied. Lu etアル[53] prepared Rh2 conjugateswith water-soluble O-carboxymethyl chitosan (O-CMC) (Rh2-conjugated O-CMCO-CMC/Rh2) (106) (see Figure 15) via an esterification reaction.  その結果、106は非常に多孔質であり、構造中のエステル結合はph感受性であることが示された。ph 5.8では初期の方がrh2の放出速度が速いため、炎症性疼痛時の損傷部位のph変化に応じてrh2の放出速度を制御することができた。o-カルボキシメチルキトサンの共役は、生体内でのrh2の溶解度を高め、放出速度を調節し、体内での作用持続時間を延長することによって、生物学的有効性を高めた。これにより、生体内でのrh2の生物学的有効性が向上します。

 

Polyethylene glycol (PEG) has the advantages of being easy to modify, biodegradable, biocompatible and having a high drug encapsulation rate, and thus shows great promise in drug delivery. Mathiyalagan etアル[54] combined hydrophilic PEG with hydrophobic Rh1 and Rh2 to synthesize two types of passive targeted delivery ginsenoside derivatives (see Figure 15). Compared with Rh1, PEG-Rh1 (107) has higher antitumor activity in human lung cancer cell lines (A549), while PEG-Rh1 and PEG-Rh2 do not exhibit cytotoxicity in an uninfected murine macrophage cell line (RAW 264.7). Among them, PEG-Rh2 (108) can greatly inhibit nitric oxide production and thus exhibit better anti-inflammatory activity. This indicates that PEG polymers can not only improve the solubility of ginsenosides and reduce cytotoxicity, but also achieve targeted delivery through the enhanced permeability and retention (EPR) effect and different pHconditions.

 

2.5共役修正

It has been reported that TPP conjugates have strong mitochondrial targeting ability, and have been used to selectively deliver anticancer drugs, including adriamycin and cisplatin, to the mitochondria of tumor cells [55]. In order to improve the targeting and activity of ginsenoside 25-MeO-PPD, 25-OH-PPD and PD, Ma et al. [56] introduced alkyl chains of different lengths at their C-3 positions, and then conjugated triphenylphosphine (TPP) at the end to synthesize a series of ginsenoside conjugates (see Figure 16). Anti-proliferation studies on cancer cell lines (A549, MCF-7) and normal cells (GES-1) showed that most of the conjugates were more active than the corresponding parent compounds, and exhibited stronger inhibitory effects in cancer cells than in normal cells. Among them, 109 can accumulate in the mitochondria of MCF-7 cells, stimulate the production of reactive oxygen species (ROS), and cause depolarization of the mitochondrial membrane potential, leading to apoptosis. Therefore, 109 exhibits high selectivity and a good antiproliferative effect (IC50 = 0.76 μmol/L) on MCF-7 cells.

 

2.6他の修正

In addition to the five methods mentioned above, structural modifications of ginsenosides also include etherification, alkylation, catalytic hydrogenation, and glycosylation [57-58]. Etherification and alkylation involve the reaction of the hydroxyl group of ginsenosides with haloalkanes under the catalysis of alkalis. Catalytic hydrogenation involves the use of a catalyst to directly hydrogenate the unsaturated group in the monomeric structure of ginsenosides to a saturated group. Glycosylation involves the introduction of corresponding donor groups such as mannosyl, xylosyl and rhamnosyl groups into the hydroxyl group of ginsenosides. For example, Ren et al. [59] introduced sugar donors to the C-20 OH of PPD derivatives through oxidation, reduction, nucleophilic substitution, and other reactions to prepare a series of ginsenoside C-K derivatives with different sugar rings [60-65].

 

3概要

This paper reviews the structural modification methods of ginsenosides in recent years. It mainly uses organic acids, amino acids and inorganic acids to react with the hydroxyl groups at the C-3 and C-20 positions of the aglycone and the primary hydroxyl groups on the sugar chain of ginsenosides to obtain ester derivatives, in order to improve the lipid solubility and bioavailability of ginsenosides. Studies on structure-activity relationships have shown that the activity of ginsenoside derivatives after esterification modification has the following characteristics: unsaturated fatty acids > saturated fatty acids, short-chain fatty acids > long-chain fatty acids. Sulphate modification by introducing polar groups, oxidation modification by reducing unsaturation or adding ionizable groups such as carboxyl groups, heterocyclic modification by increasing the number of hydrogen bonds, and hydrophilic complex modification can all improve the water solubility and bioavailability of ginsenosides to varying degrees, and can significantly improve the biological activity of these derivatives. These modification methods provide an important reference for the study and development and ginsenosidesの応用.

 

However, there are currently some deficiencies in the structural modification of ginsenosides: firstly, there are relatively few structural modification methods. Structural modification mainly involves introducing groups that can react with hydroxyl groups, making the sites and types of products of structural modification relatively simple, and leading to insufficient research on the structure-activity relationship. In particular, there is a relative lack of modification of the sugar chain. There are few reports on the replacement of the sugar chain and the splicing of the sugar chain essential for activity with other different types of aglycon or skeleton to enhance activity and broaden the scope of activity. Second, the lack of precision in structural modification results in low activity. Current research on the activity of ginsenoside derivatives mainly focuses on in vitro anti-tumor and anti-oxidant activities, and there is relatively little further research on in vivo activity, with very few compounds entering clinical research. Third, the research on the activity of ginsenoside derivatives is not in-depth enough. There is very limited research on ginsenosides and their derivatives with immunostimulatory activity as vaccine adjuvants. The few studies on ginsenoside adjuvants mainly use crude ginsenoside extracts, and there is a lack of systematic research on the potential application value of ginsenosides and their derivatives as potent immunostimulants in vaccine adjuvants.

 

Fourth, current structural modifications mainly focus on dammarane-type ginsenosides, with relatively few modifications to oleanolic acid and orcinol-type ginsenosides. Therefore, future structural modifications should improve the accuracy of introducing groups and structures, expand structural modification methods and modification sites, expand the application scope of ginsenoside derivatives, and lay a theoretical foundation for the development of ginsenoside drugs and health foods.

 

参考:

[1] hou m, wang r, zhao s, et al。panax属のギンセノシドとその生合成[j]。動物Pharmaceutica報B、2021年まで、11(7):1813-1183。

[2] wang y h, ai z y, zhang j d, et al。ギンセノシドの抗腫瘍活性とそのメカニズムに関する研究[j]。食品産業の科学と技術,2023,44(1):485-491。

[3] paik s, song g y, jo e k, et al。酸化ストレス調節を介して炎症を標的とする治療薬としてのギンセノシド[j]。国際Immunopharmacology 2023 121: 110461。

[4] liu f x, lin z x, zhang h l, et al。人参の抗疲労機構と潜在的標的の分析[j]。中国本草綱目,2019,44(24):5479-5487。

[5] arring n m, millstine d, marks l a, et al。疲労治療としての人参:システマティックレビュー[j]。^ a b c d e f g h i『仙台市史』、2018年、24- 24頁。

[6] feng s, li t, wei x, zheng y, et al。珍しいginsenosidesγの抗酸化、つか作用があると効果-aminobutyric発芽玄米発酵人参に酸すり混ぜ。international journal of molecular sciences . 2024, 25(19):10359。

[7]「胡 Q R,  洪 H 張 Z H et  al.  方法 on  改善 of the  poor  口頭 ギンセノシドの生物学的利用能:前処理、構造修飾、薬剤併用、マイクロ・ナノデリバリーシステム[j]。^『仙台市史』通史編(通史編)、通史編(通史編)、2017年、47頁。

[8] fan w, fan l, wang z, et al。珍しいginsenosides:高麗人参研究のユニークな視点 [J]。^「journal of advanced research, 2024」。www.doi.org/10.1016/j.jare.2024.01.003 . 2016年12月23日閲覧。

[9] xu w, lyu w, duan c, et al。希少なギンセノシドrg3の調製と生物活性 そしてrh2:更新されたレビュー[j]。Fitoterapia、2023 167位:105514。

[10] li s, li j, zhao y, et al。mannose-decorated azocalixareneによる多機能ナノ材料の超分子統合 関節リウマチの相乗療法のために[j]。^「acs nano, 2023, 17(24): 25468-25482」。acs nano . 2018年3月17日閲覧。

[11] yan h, jin h, fu y, et al。パナックス高麗人参珍しいギンセノシドrg3の生産 [j]の内生菌によるrh2。農業・食品化学,2019,67(31):8493-8499。

[12] xu x, qu w, jia z, et al。新品種紅参の抗炎症活性に対する栽培年齢の影響[j]。バイオ医薬品&^アポロドーロス、2018年1月1日、11 - 13頁。

[13] BEDNARCZYK-CWYNAR B、LEŚ講話、SZCZUKA I,らオレアノール酸およびその4つの新しい半合成誘導体がヒトmewoおよびa375黒色腫細胞株に与える影響[j]。2017年(平成29年)4月16日:5両編成化。

[14] X頳、ケJ、鄭YらΑ synthesis  オレアノリックの生物活性評価 -グルコシダーゼおよび-アミラーゼ阻害剤としての酸オキシムエステル誘導体[j]。journal of enzyme inhibition and medicinal chemistry, 2022, 37(1): 451-461。

[15] cao y, wang k, wang j, et al。多環窒素含有基を有するオコチロール誘導体の設計、合成および抗菌評価[j]。未来の薬用化学、2021年、13 (12):1025-1039

[16] liu j, gan h, li t, et al。ocotillolの経口投与後の生体内代謝物および生体変換経路[j]。生物医学クロマトグラフィー,2020,34 (8):e4856。

[17]張 D,  チョ Y 王 K,  et  al.  デザイン 合成、 and  抗菌 評価 『小説 オコチロール誘導体と従来の抗生物質との相乗効果[j]。^ a b c d e f g h i(2017年)、26頁。

[18] tong y, song x, zhang y, et al。ppd型ギンセノシド誘導体の構造修飾、生物活性、構造活性相関に関する知見[j]。^アポロドーロス、2018年5月15日、158頁。

[19]郭 H、杏Y 太陽 Y et  al.  Ginsengenin derivatives  synthesized  from  20 (R) -panaxotriol: hif-1経路を標的とした合成、特性評価、および抗腫瘍活性[j]。朝鮮人参学会誌,2022,46(6):738-749。

[20] hu q, hong h, zhang z, et al。ギンセノシドの経口生物学的利用能の低さを改善する方法:前処理、構造修飾、薬剤併用、マイクロ・ナノデリバリーシステム[j]。^『仙台市史』通史編(通史編)、通史編(通史編)、2017年、47頁。

[21]李 J 大 Y L,  鄭 F et  al.  口頭 吸収 and  in  vivo  biotransformation のginsenosides [J]。中国の生物学雑誌,2014,27(12):1633-1636。

[22] liang j, tang x, wan s, et al。ギンセノシドrh2の構造改変 がん細胞の細胞増殖抑制活性[j]。ACSオメガ貴様の2023 8(19):17245-17253。

[23] li k k, yan x m, li z n, et al。3つの新規ginsenoside m1の合成と抗腫瘍活性 3 ' -エステル修飾を有する誘導体[j]。生物有機化学,2019,90:103601。

[24] huang y, li h m, zhang y x, et al。ginsenoside化合物の合成生物評価lxrのK番目の派生商品は小説班としてか[J]αことをします^ a b c d e f g h i(2017)、22頁。

[25] wang r, li m, liu m, et al。scfas-modified debranched starchによるピッカリングエマルションの特性評価と a  提供強力な代わりに パッケージ bioactive化合物  [J]。国際  誌  of  生体高分子、2023、231:123164。

[26] sung kee r, timonthy j k, kazutoshi f, et al。経口アスタキサンチンプロドラッグ(cdx-085)のldlr- /-およびapoe -/-マウスにおけるアテローム性動脈硬化のリポタンパク質レベルおよび進行に対する影響[j]。アテローム硬化症つまり2012年222

[27] christopher t c, udayanath a, christopher a w, et al。短鎖脂肪酸ヘキソサミン類似体を用いて侵襲性がん遺伝子を標的とすると、転移性のmda-mb-231乳がん細胞の移動性が阻害される[j]。全国書誌番号:51:1 8135-8147。

[28] zhang j, tong y, lu x, et al。ギンセノシドc-kの誘導体および肝細胞がんに対する阻害作用[j]。生命科学、2020年304:120698。

[29] xiao s, lin z, wang x, et al。パナキサジオール誘導体の合成および細胞毒性評価[j]。化学&生物の多様性を2020 17 (1):e1900516。

[30] yuan w, guo j, wang x,et al. 25-methoxylprotopanaxadiol/25-hydroxyprotopanaxadioland their anti-tumor  activity  評価 [J]。 ^ a b cアポロドーロス、2018年、1-8頁。

[31] lin l, zhao y, wang p, et al。ginsenoside ad-2のアミノ酸誘導体は、細胞骨格に影響を与えてhepg2細胞のアポトーシスを誘導する[j]。分子2023 28(21):7400。

[32]宮本 T, 戸川 K,  樋口 R,  et  al.  6 新たに 識別 生物学的 active  ナマコcucurnaria echinata由来のトリテルペノイド硫酸[j]。1989年(平成元年)Liebigs Annalen der Chemie 1990年(5):453-460。

[33] guo z, wang l, haq s, et al。硫酸修飾された全ギンセノシド誘導体3の免疫調節活性のin vitro評価[j]。^ a b c d e f『科学技術史』、2018年、10 - 10頁。

[34]福 B BI W 彼は C,  et  al.  Sulfated derivatives  of 20 (S) -ginsenoside Rh2   and  their  inhibitory  effects  lps誘発性炎症性サイトカインおよびメディエーター[j]。^『仙台市史』通史編、仙台市、2013年、308 -307頁。

[35] bi w, fu b, shen h, et al。20(s)-ギンセノシドrh2の硫酸誘導体 lps誘導マクロファージのmapkおよびnf-kappa b経路を介して炎症性サイトカインを阻害する[j]。^『官報』第1659号、大正5年6月16日。

[36]どう BI W 申 H et  al.  抑制 effects  of  sulfated  20(S)-ginsenoside  Rh2    on  the  release  of  lps誘導生細胞264.7細胞における炎症誘発性メディエーター[j]。^「european journal of pharmacology」。european journal of pharmacology(2013年). 2013年6月6日閲覧。

[37] zhou w x, yang n, zhao y q . ginsenosideの水溶性改善に関する研究の進展[j]。製薬評価研究、2016年39(2):322-327。

[38] wong v, dong h, liang x, et al。新しい代謝抑制因子であるrh2e2は、腫瘍細胞のエネルギー代謝を特異的に阻害する[j]。oncotargets and therapy, 2016, 7(9): 9997 -9924。

[39] sun y x, fang x j, gao m, et al。新規抗炎症剤としてのピキシノール誘導体の合成と構造-活性関係[j]。ACS薬用化学书状は2020年、11、457-463。

[40]王 Y MI X, 杜 Y et  al.  デザイン 合成、 and  anti-inflammatory  activities  of  12-dehydropyxinol派生商品デリバティブのか[J]です^『官報』第2028号、大正13年(1923年)3月28日。

[41] yang g, mi x, wang y, et al。マイケルアクセプターの融合は、nlrp3の調節因子としてのギンセノシドの抗炎症活性を高める シグナリング経路 [J]。2023 Bioorganic化学 134:106467。

[42] zhang y m, yuan w h, wang x d, et al。ギンセンジオール酸化および窒素ハイブリッド誘導体の合成、特性評価および細胞毒性活性評価[j]。^「medchemcomm, 2018, 9(11): 1910—1919」。the new york times . 2018年9月9日閲覧。

[43] xiao s, wang x, xu l, et al。新規のギンセノシド誘導体は、g1期の停止を誘導し、活性酸素種を介して細胞のアポトーシスを誘導することにより、pc-3細胞に対して効果を示す[j]。^ a b c d e f g h『生物化学』、2016年、12 - 12頁。

[44] yang g q, liu s, zhang c, et al。アミノ酸残基を非基質とするピキシノールアミド誘導体の発見 allosteric 阻害薬 p-glycoprotein-mediatedの 開始 抵抗 [J]。 誌 of  汉方薬の化学、2023、66(13):8628-8642。

[45] ma l, miao d, lee j, et al。潜在的な抗腫瘍剤としての複素環式リング融合ダンマラン型ギンセノシド誘導体の合成および生物学的評価[j]。^「bioorganic chemistry」。bioorganic chemistry . 2016年3月16日閲覧。

[46] karrouchi k, radi s, ramli y, et al。ピラゾール誘導体の合成と薬理活性:総説[j]。2018年分子、23日(1面)134

[47]王j、王d b、隋l l、 らnatural products-isoxazole hybrids: a review of 発展in medicinal chemistry [j]。^「arabian journal of chemistry, 2024, 17(6):105794。

[48] dai r, wei x, li t, et al。パナキサジオールピラゾールおよびイソオキサゾール誘導体の合成および抗腫瘍活性[j]。化学&^ a b c d e f g h i(2018年)、8頁。

[49] hou w, dai w, huang h, et al。ピラジンの薬理活性とメカニズム[j]。^『日本建築学会誌』、2018年、58 - 58頁。

[50]ラシード H  U, MARTINES M A  U, ドゥアルテ1 A  P et   al.  研究 developments  in  the   ピリミジンの合成、抗炎症活性および構造活性相関[j]。あらかじめRSC。、2021年まで、11(11):6060-6098。

[51]王 S,  張 J 張 J et  al.  合成 and  biological  評価 of  heterocyclic  強力な抗骨粗鬆症薬としてのリング融合20(s)-プロトパナキサジオール誘導体[j]。薬用化学の雑誌、2023 66(17):11965-11984。

[52] yang k, yang z, yu g, et al。多プロドラッグ・ナノ医療:がん治療の新たなパラダイム[j]。advanced materials, 2022, 34 (6): e2107434。

[53]盧 H です" J 任 Y et  al.  評価 of the  anti-inflammatory  痛み effect  of  ginsenoside共役o-カルボキシメチルキトサン粒子[j]。^『官報』第2023号、大正5年(1919年)4月15日。

[54] mathiyalagan r, wang c, kim y, et al。ポリエチレングリコール-ギンセノシドrh1の調製 また、rh2複合体とその肺がんおよび炎症に対する有効性[j]。^ a b c d e f g h i(2019年)、24頁。

[55] batheja s, gupta s, tejavath k k, et al。tpp-based conjugates: potential targeting ligands [j]。発売日:2019年2月29日(予定):03983。

[56] ma l, wang x, li w,et al. rational トリフェニルホスホニウム-ギンセノシドの設計、合成、生物学的評価 conjugates  as  mitochondria-targeting  anti-cancer  エージェント [J]。 ^ a b c d e f g h『生物化学』、2010年、103 - 104頁。

[57] zhang h r, ye aq, zhang y w, et al。ギンセノシド誘導体とその生物活性に関する研究[j]。chinese traditional and herbal drugs, 2022, 53(14): 4554-4567。

[58]元 S Z 王 B 周 X, et  al.   希少なギンセノシドの生物学的変換に関する研究  [J]。食品産業の科学と技術,2023,44(12):480-489。

[59] rrn s, liu r, wang y, et al。抗喘息薬の新規クラスとしてのギンセノシド化合物k類似体の合成と生物学的評価[j]。Bioorganic &汉方薬の化学手紙、2019年、29(1):追われ。

[60] ren g, lv w, ding y, et al。人参サポニンメタボライト20(s)-protopanaxadiolは、複数の標的シグナル伝達経路によって肺線維症を緩和する[j]。^『仙台市史』通史編(通史編)、通史編(通史編)、2017年、47 - 53頁。

[61] zhang h, zhang l, yang c, et al。protopanaxadiol型サポニンの予防効果サポニンとprotopanaxatriol型 saponins on  myelosuppression ネズミ induced  by  エンドキサン  [J]。 フロンティア 薬理学では、2022、13:845034。

[62] kim a, park sm, kim ns, et al。panax ginsengの活性成分であるギンセノシドrcは、ミトコンドリアの生合成を改善することにより、酸化ストレスによる筋萎縮を緩和する[j]。^アポロドーロス、2018年12月12日、12頁。

[63] li s, li jj, zhao yy, et al。mannose-decorated azocalixareneによる多機能ナノ材料の超分子統合 関節リウマチの相乗療法のために[j]。^「acs nano, 2023, 17(24): 25468-25482」。acs nano . 2018年3月17日閲覧。

[64] lee h, kong g, tran q, et al。ギンセノシドrg3との関係 メタボリックシンドローム[j]ですせいめんを切り薬理学、2020年、11:130

[65]陳 Y Y 柳  Q P の P  et  al.  Ginsenoside レギーナ: A  有望 natural  neuroprotective 捜査官  [J]。^『フィトメディシン』2022年版、95:153883頁。

ついて来て
一覧に戻る
Prev

ギンセノシドの抽出方法は?

高麗人参エキスの研究抗疲労ギンセノシド

詳細が必要な場合は、連絡してください.